File size: 3,290 Bytes
cb86f7e 4b20b59 3538145 4b20b59 3538145 4b20b59 3538145 4b20b59 3538145 4b20b59 3538145 4b20b59 cb86f7e 4b20b59 cb86f7e 4b20b59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
from transformers import pipeline
import gradio as gr
# Pipeline
pipe = pipeline("text-classification", model="AbrorBalxiyev/my_awesome_model", return_all_scores=True)
# def get_html_for_results(results):
# # Sort results by score in descending order
# sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
# html = """
# <style>
# .result-container {
# font-family: Arial, sans-serif;
# max-width: 600px;
# margin: 20px auto;
# }
# .category-row {
# margin: 10px 0;
# }
# .category-name {
# display: inline-block;
# width: 120px;
# font-size: 14px;
# color: #333;
# }
# .progress-bar {
# display: inline-block;
# width: calc(100% - 200px);
# height: 20px;
# background-color: #f0f0f0;
# border-radius: 10px;
# overflow: hidden;
# margin-right: 10px;
# }
# .progress {
# height: 100%;
# background-color: #ff6b33;
# border-radius: 10px;
# transition: width 0.5s ease-in-out;
# }
# .percentage {
# display: inline-block;
# width: 50px;
# text-align: right;
# color: #666;
# }
# </style>
# <div class="result-container">
# """
# for item in sorted_results:
# percentage = item['score'] * 100
# html += f"""
# <div class="category-row">
# <span class="category-name">{item['label']}</span>
# <div class="progress-bar">
# <div class="progress" style="width: {percentage}%;"></div>
# </div>
# <span class="percentage">{percentage:.0f}%</span>
# </div>
# """
# html += "</div>"
# return html
# # Gradio interfeysi uchun funksiyani qayta yozish
# def classify_text(text):
# if not text.strip():
# return "Please enter some text to classify."
# pred = pipe(text)
# return get_html_for_results(pred[0])
# # Gradio interfeysi
# iface = gr.Interface(
# fn=classify_text,
# inputs=[
# gr.Textbox(
# placeholder="Enter text to classify...",
# label=None,
# lines=3
# )
# ],
# outputs=gr.HTML(),
# title="Text Category Classification",
# css="""
# .gradio-container {
# font-family: Arial, sans-serif;
# }
# .gradio-interface {
# max-width: 800px !important;
# }
# #component-0 {
# border-radius: 8px;
# border: 1px solid #ddd;
# }
# .submit-button {
# background-color: #ff6b33 !important;
# }
# .clear-button {
# background-color: #f0f0f0 !important;
# color: #333 !important;
# }
# """,
# examples=[
# ["Messi jahon chempioni bo'ldi"],
# ["Yangi iPhone 15 Pro Max sotuvga chiqdi"],
# ["Kitob o'qish foydali"],
# ["Toshkentda ob-havo issiq"]
# ]
# )
# iface.launch(share=True)
demo=gr.Interface.from_pipeline(pipe)
demo.launch(debug=True) |