from transformers import pipeline import gradio as gr # Pipeline pipe = pipeline("text-classification", model="AbrorBalxiyev/my_awesome_model", return_all_scores=True) def get_html_for_results(results): # Sort results by score in descending order sorted_results = sorted(results, key=lambda x: x['score'], reverse=True) html = """
""" for item in sorted_results: percentage = item['score'] * 100 html += f"""
{item['label']}
{percentage:.0f}%
""" html += "
" return html # Gradio interfeysi uchun funksiyani qayta yozish def classify_text(text): if not text.strip(): return "Please enter some text to classify." pred = pipe(text) return get_html_for_results(pred[0]) # Gradio interfeysi iface = gr.Interface( fn=classify_text, inputs=[ gr.Textbox( placeholder="Enter text to classify...", label=None, lines=3 ) ], outputs=gr.HTML(), title="Text Category Classification", css=""" .gradio-container { font-family: Arial, sans-serif; } .gradio-interface { max-width: 800px !important; } #component-0 { border-radius: 8px; border: 1px solid #ddd; } .submit-button { background-color: #ff6b33 !important; } .clear-button { background-color: #f0f0f0 !important; color: #333 !important; } """, examples=[ ["Messi jahon chempioni bo'ldi"], ["Yangi iPhone 15 Pro Max sotuvga chiqdi"], ["Kitob o'qish foydali"], ["Toshkentda ob-havo issiq"] ] ) iface.launch(share=True) # demo=gr.Interface.from_pipeline(pipe) # demo.launch(debug=True)