File size: 13,382 Bytes
2c5fbe9 60e12de 53d44b2 60e12de 5be6938 a539744 53d44b2 be283ee 60e12de be283ee 60e12de 53d44b2 60e12de 55ab780 53d44b2 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 5be6938 60e12de 53d44b2 60e12de 53d44b2 60e12de 5be6938 53d44b2 5be6938 53d44b2 5be6938 2c5fbe9 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 5be6938 53d44b2 5be6938 53d44b2 5be6938 53d44b2 5be6938 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 2c5fbe9 60e12de 53d44b2 60e12de 53d44b2 60e12de 53d44b2 5be6938 53d44b2 60e12de 5be6938 53d44b2 5be6938 60e12de 53d44b2 5be6938 53d44b2 5be6938 60e12de a539744 53d44b2 2c5fbe9 60e12de a539744 53d44b2 a539744 53d44b2 a539744 53d44b2 556706a 53d44b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
from transformers import pipeline
from dataclasses import dataclass, field
from typing import List, Optional, Dict, Any
import re
from datetime import datetime
import logging
import html
from uuid import uuid4
import torch
import gradio as gr
import emoji
# Настройка логирования
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class Comment:
"""Представляет комментарий Instagram со всеми метаданными"""
id: str = field(default_factory=lambda: str(uuid4()))
username: str = ""
time: str = ""
content: str = ""
likes: int = 0
level: int = 0
parent_id: Optional[str] = None
replies: List['Comment'] = field(default_factory=list)
is_verified: bool = False
mentions: List[str] = field(default_factory=list)
hashtags: List[str] = field(default_factory=list)
is_deleted: bool = False
sentiment: Optional[str] = None
language: Optional[str] = None
emojis: List[str] = field(default_factory=list)
def __post_init__(self):
if len(self.content) > 2200:
logger.warning(f"Comment content exceeds 2200 characters for user {self.username}")
self.content = self.content[:2200] + "..."
class InstagramCommentAnalyzer:
"""Анализатор комментариев Instagram с расширенной функциональностью"""
COMMENT_PATTERN = r'''
(?P<username>[\w\u0400-\u04FF.-]+)\s*
(?P<time>(?:\d+\s+(?:нед|мин|ч|д|мес|год|sec|min|h|d|w|mon|y)\.?))\s*
(?P<content>.*?)
(?:(?:Отметки|Likes)\s*"?Нравится"?:\s*(?P<likes>\d+))?
(?:Ответить|Reply)?(?:Показать\sперевод|Show\stranslation)?(?:Нравится|Like)?
'''
TIME_MAPPING = {
'нед': 'week', 'мин': 'minute', 'ч': 'hour',
'д': 'day', 'мес': 'month', 'год': 'year',
'w': 'week', 'h': 'hour', 'd': 'day',
'mon': 'month', 'y': 'year'
}
def __init__(self, max_depth: int = 10, max_comment_length: int = 2200):
"""Инициализация анализатора"""
self.check_dependencies()
self.max_depth = max_depth
self.max_comment_length = max_comment_length
self.pattern = re.compile(self.COMMENT_PATTERN, re.VERBOSE | re.DOTALL)
self.comments: List[Comment] = []
self.stats = self.initialize_stats()
self.sentiment_analyzer = self.load_sentiment_model()
def initialize_stats(self) -> Dict[str, int]:
"""Инициализация статистики"""
return {
'total_comments': 0,
'deleted_comments': 0,
'empty_comments': 0,
'max_depth_reached': 0,
'truncated_comments': 0,
'processed_mentions': 0,
'processed_hashtags': 0,
'processed_emojis': 0,
'failed_parses': 0
}
def check_dependencies(self):
"""Проверка зависимостей"""
required_packages = ['torch', 'transformers', 'emoji']
for package in required_packages:
try:
__import__(package)
except ImportError:
logger.error(f"Required package {package} is not installed")
raise
def load_sentiment_model(self):
"""Загрузка модели анализа тональности"""
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
return pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=device
)
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise
def normalize_text(self, text: str) -> str:
"""Улучшенная нормализация текста"""
text = html.unescape(text)
text = ' '.join(text.split())
text = re.sub(r'[\u200b\ufeff\u200c]', '', text)
return text
def extract_emojis(self, text: str) -> List[str]:
"""Извлечение эмодзи из текста"""
return [c for c in text if c in emoji.EMOJI_DATA]
def normalize_time(self, time_str: str) -> str:
"""Нормализация временных меток"""
for rus, eng in self.TIME_MAPPING.items():
if rus in time_str:
return time_str.replace(rus, eng)
return time_str
def clean_content(self, content: str) -> str:
"""Очистка содержимого комментария"""
content = content.strip()
content = re.sub(r'\s+', ' ', content)
if len(content) > self.max_comment_length:
self.stats['truncated_comments'] += 1
content = content[:self.max_comment_length] + "..."
return content
def extract_metadata(self, comment: Comment) -> None:
"""Извлечение метаданных из комментария"""
try:
# Извлечение упоминаний и хэштегов
comment.mentions = re.findall(r'@(\w+)', comment.content)
comment.hashtags = re.findall(r'#(\w+)', comment.content)
# Извлечение эмодзи
comment.emojis = self.extract_emojis(comment.content)
# Обновление статистики
self.stats['processed_mentions'] += len(comment.mentions)
self.stats['processed_hashtags'] += len(comment.hashtags)
self.stats['processed_emojis'] += len(comment.emojis)
# Проверка верификации
comment.is_verified = bool(re.search(r'✓|Подтвержденный', comment.username))
except Exception as e:
logger.error(f"Metadata extraction failed: {str(e)}")
def analyze_sentiment(self, text: str) -> str:
"""Анализ тональности текста"""
try:
result = self.sentiment_analyzer(text)
return result[0]['label']
except Exception as e:
logger.error(f"Sentiment analysis failed: {str(e)}")
return "UNKNOWN"
def process_comment(self, text: str, parent_id: Optional[str] = None, level: int = 0) -> Optional[Comment]:
"""Обработка отдельного комментария"""
if not self.validate_input(text):
return None
if level > self.max_depth:
logger.warning(f"Maximum depth {self.max_depth} exceeded")
self.stats['max_depth_reached'] += 1
return None
try:
text = self.normalize_text(text)
match = self.pattern.match(text)
if not match:
alt_match = self.alternative_parse(text)
if not alt_match:
raise ValueError(f"Could not parse comment: {text[:100]}...")
match = alt_match
data = match.groupdict()
comment = Comment(
username=data['username'].strip(),
time=self.normalize_time(data['time']),
content=self.clean_content(data['content']),
likes=self.parse_likes(data.get('likes', '0')),
level=level,
parent_id=parent_id
)
# Анализ тональности и метаданных
comment.sentiment = self.analyze_sentiment(comment.content)
self.extract_metadata(comment)
self.stats['total_comments'] += 1
return comment
except Exception as e:
logger.error(f"Error processing comment: {str(e)}", exc_info=True)
self.stats['failed_parses'] += 1
return self.create_damaged_comment()
def alternative_parse(self, text: str) -> Optional[re.Match]:
"""Альтернативный метод парсинга для сложных случаев"""
alternative_patterns = [
# Более простой паттерн
r'(?P<username>[\w\u0400-\u04FF.-]+)\s*(?P<content>.*?)(?P<time>\d+\s+\w+\.?)(?P<likes>\d+)?',
# Паттерн для мобильной версии
r'(?P<username>[\w\u0400-\u04FF.-]+)\s*(?P<content>.*?)(?P<time>\d+\s+\w+)(?:Like)?(?P<likes>\d+)?'
]
for pattern in alternative_patterns:
try:
match = re.compile(pattern, re.VERBOSE | re.DOTALL).match(text)
if match:
return match
except Exception:
continue
return None
def parse_likes(self, likes_str: str) -> int:
"""Безопасный парсинг количества лайков"""
try:
return int(re.sub(r'\D', '', likes_str) or 0)
except (ValueError, TypeError):
return 0
def create_damaged_comment(self) -> Comment:
"""Создание заглушки для поврежденного комментария"""
return Comment(
username="[damaged]",
time="unknown",
content="[Поврежденные данные]",
is_deleted=True
)
def validate_input(self, text: str) -> bool:
"""Валидация входного текста"""
if not text or not isinstance(text, str):
logger.error("Invalid input: text must be non-empty string")
return False
if len(text) > 50000:
logger.error("Input text too large")
return False
return True
def format_comment(self, comment: Comment, index: int) -> str:
"""Форматирование комментария для вывода"""
try:
if comment.is_deleted:
return f'{index}. "[УДАЛЕНО]"'
emoji_str = ' '.join(comment.emojis) if comment.emojis else ''
mentions_str = ', '.join(comment.mentions) if comment.mentions else ''
hashtags_str = ', '.join(comment.hashtags) if comment.hashtags else ''
return (
f'{index}. "{comment.username}" "{comment.time}" '
f'"{comment.content}" "Лайки: {comment.likes}" '
f'"Настроение: {comment.sentiment}" '
f'"Эмодзи: {emoji_str}" '
f'"Упоминания: {mentions_str}" '
f'"Хэштеги: {hashtags_str}"'
)
except Exception as e:
logger.error(f"Error formatting comment: {str(e)}")
return f'{index}. "[ОШИБКА ФОРМАТИРОВАНИЯ]"'
def process_comments(self, text: str) -> List[str]:
"""Обработка всех комментариев"""
try:
self.stats = self.initialize_stats()
text = self.normalize_text(text)
raw_comments = text.split('ОтветитьНравится')
formatted_comments = []
for i, raw_comment in enumerate(raw_comments, 1):
if not raw_comment.strip():
continue
comment = self.process_comment(raw_comment)
if comment:
formatted_comments.append(self.format_comment(comment, i))
return formatted_comments
except Exception as e:
logger.error(f"Error processing comments: {str(e)}")
return ["[ОШИБКА ОБРАБОТКИ КОММЕНТАРИЕВ]"]
def create_interface():
"""Создание интерфейса Gradio"""
analyzer = InstagramCommentAnalyzer()
def analyze_text(text: str):
formatted_comments = analyzer.process_comments(text)
return "\n".join(formatted_comments)
iface = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(
lines=10,
placeholder="Вставьте текст комментариев здесь...",
label="Входной текст"
),
outputs=gr.Textbox(
lines=20,
placeholder="Результаты анализа будут отображены здесь...",
label="Результаты анализа"
),
title="Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с поддержкой эмодзи и мультиязычности",
theme="default",
analytics_enabled=False,
)
return iface
def main():
"""Основная функция запуска приложения"""
try:
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise
if __name__ == "__main__":
main() |