File size: 13,382 Bytes
2c5fbe9
60e12de
53d44b2
60e12de
 
 
 
 
5be6938
a539744
53d44b2
be283ee
60e12de
 
 
 
 
 
be283ee
60e12de
 
53d44b2
60e12de
 
 
 
 
 
 
 
 
 
 
 
55ab780
53d44b2
 
60e12de
 
 
 
 
 
 
53d44b2
 
60e12de
53d44b2
 
60e12de
53d44b2
 
60e12de
 
53d44b2
 
 
 
 
 
 
60e12de
53d44b2
5be6938
60e12de
 
 
 
53d44b2
 
 
 
 
 
60e12de
 
 
 
 
 
53d44b2
 
 
60e12de
5be6938
 
53d44b2
 
5be6938
 
 
 
 
 
 
 
53d44b2
5be6938
 
 
 
 
 
 
 
 
 
 
2c5fbe9
60e12de
53d44b2
60e12de
 
 
 
 
53d44b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e12de
53d44b2
5be6938
53d44b2
5be6938
 
53d44b2
 
 
 
 
 
5be6938
53d44b2
 
 
5be6938
 
 
60e12de
53d44b2
 
 
 
 
 
 
 
 
 
 
 
 
60e12de
 
 
 
 
 
53d44b2
60e12de
53d44b2
60e12de
53d44b2
 
 
 
60e12de
 
 
53d44b2
 
 
 
60e12de
 
 
 
53d44b2
2c5fbe9
60e12de
53d44b2
60e12de
 
 
 
53d44b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e12de
 
53d44b2
5be6938
 
53d44b2
 
 
 
 
60e12de
5be6938
 
53d44b2
 
 
 
 
5be6938
 
 
 
60e12de
 
53d44b2
5be6938
53d44b2
5be6938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e12de
a539744
53d44b2
2c5fbe9
60e12de
a539744
 
 
 
 
 
53d44b2
 
 
 
 
 
 
 
 
 
a539744
53d44b2
 
 
a539744
 
 
 
53d44b2
 
 
 
 
 
 
 
 
 
 
 
556706a
 
53d44b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from transformers import pipeline
from dataclasses import dataclass, field
from typing import List, Optional, Dict, Any
import re
from datetime import datetime
import logging
import html
from uuid import uuid4
import torch
import gradio as gr
import emoji

# Настройка логирования
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

@dataclass
class Comment:
    """Представляет комментарий Instagram со всеми метаданными"""
    id: str = field(default_factory=lambda: str(uuid4()))
    username: str = ""
    time: str = ""
    content: str = ""
    likes: int = 0
    level: int = 0
    parent_id: Optional[str] = None
    replies: List['Comment'] = field(default_factory=list)
    is_verified: bool = False
    mentions: List[str] = field(default_factory=list)
    hashtags: List[str] = field(default_factory=list)
    is_deleted: bool = False
    sentiment: Optional[str] = None
    language: Optional[str] = None
    emojis: List[str] = field(default_factory=list)

    def __post_init__(self):
        if len(self.content) > 2200:
            logger.warning(f"Comment content exceeds 2200 characters for user {self.username}")
            self.content = self.content[:2200] + "..."

class InstagramCommentAnalyzer:
    """Анализатор комментариев Instagram с расширенной функциональностью"""
    
    COMMENT_PATTERN = r'''
        (?P<username>[\w\u0400-\u04FF.-]+)\s*
        (?P<time>(?:\d+\s+(?:нед|мин|ч|д|мес|год|sec|min|h|d|w|mon|y)\.?))\s*
        (?P<content>.*?)
        (?:(?:Отметки|Likes)\s*"?Нравится"?:\s*(?P<likes>\d+))?
        (?:Ответить|Reply)?(?:Показать\sперевод|Show\stranslation)?(?:Нравится|Like)?
    '''

    TIME_MAPPING = {
        'нед': 'week', 'мин': 'minute', 'ч': 'hour',
        'д': 'day', 'мес': 'month', 'год': 'year',
        'w': 'week', 'h': 'hour', 'd': 'day',
        'mon': 'month', 'y': 'year'
    }

    def __init__(self, max_depth: int = 10, max_comment_length: int = 2200):
        """Инициализация анализатора"""
        self.check_dependencies()
        self.max_depth = max_depth
        self.max_comment_length = max_comment_length
        self.pattern = re.compile(self.COMMENT_PATTERN, re.VERBOSE | re.DOTALL)
        self.comments: List[Comment] = []
        self.stats = self.initialize_stats()
        self.sentiment_analyzer = self.load_sentiment_model()

    def initialize_stats(self) -> Dict[str, int]:
        """Инициализация статистики"""
        return {
            'total_comments': 0,
            'deleted_comments': 0,
            'empty_comments': 0,
            'max_depth_reached': 0,
            'truncated_comments': 0,
            'processed_mentions': 0,
            'processed_hashtags': 0,
            'processed_emojis': 0,
            'failed_parses': 0
        }

    def check_dependencies(self):
        """Проверка зависимостей"""
        required_packages = ['torch', 'transformers', 'emoji']
        for package in required_packages:
            try:
                __import__(package)
            except ImportError:
                logger.error(f"Required package {package} is not installed")
                raise

    def load_sentiment_model(self):
        """Загрузка модели анализа тональности"""
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            logger.info(f"Using device: {device}")
            return pipeline(
                "sentiment-analysis",
                model="distilbert-base-uncased-finetuned-sst-2-english",
                device=device
            )
        except Exception as e:
            logger.error(f"Model loading failed: {str(e)}")
            raise

    def normalize_text(self, text: str) -> str:
        """Улучшенная нормализация текста"""
        text = html.unescape(text)
        text = ' '.join(text.split())
        text = re.sub(r'[\u200b\ufeff\u200c]', '', text)
        return text

    def extract_emojis(self, text: str) -> List[str]:
        """Извлечение эмодзи из текста"""
        return [c for c in text if c in emoji.EMOJI_DATA]

    def normalize_time(self, time_str: str) -> str:
        """Нормализация временных меток"""
        for rus, eng in self.TIME_MAPPING.items():
            if rus in time_str:
                return time_str.replace(rus, eng)
        return time_str

    def clean_content(self, content: str) -> str:
        """Очистка содержимого комментария"""
        content = content.strip()
        content = re.sub(r'\s+', ' ', content)
        if len(content) > self.max_comment_length:
            self.stats['truncated_comments'] += 1
            content = content[:self.max_comment_length] + "..."
        return content

    def extract_metadata(self, comment: Comment) -> None:
        """Извлечение метаданных из комментария"""
        try:
            # Извлечение упоминаний и хэштегов
            comment.mentions = re.findall(r'@(\w+)', comment.content)
            comment.hashtags = re.findall(r'#(\w+)', comment.content)
            
            # Извлечение эмодзи
            comment.emojis = self.extract_emojis(comment.content)
            
            # Обновление статистики
            self.stats['processed_mentions'] += len(comment.mentions)
            self.stats['processed_hashtags'] += len(comment.hashtags)
            self.stats['processed_emojis'] += len(comment.emojis)
            
            # Проверка верификации
            comment.is_verified = bool(re.search(r'✓|Подтвержденный', comment.username))
        except Exception as e:
            logger.error(f"Metadata extraction failed: {str(e)}")

    def analyze_sentiment(self, text: str) -> str:
        """Анализ тональности текста"""
        try:
            result = self.sentiment_analyzer(text)
            return result[0]['label']
        except Exception as e:
            logger.error(f"Sentiment analysis failed: {str(e)}")
            return "UNKNOWN"
def process_comment(self, text: str, parent_id: Optional[str] = None, level: int = 0) -> Optional[Comment]:
        """Обработка отдельного комментария"""
        if not self.validate_input(text):
            return None

        if level > self.max_depth:
            logger.warning(f"Maximum depth {self.max_depth} exceeded")
            self.stats['max_depth_reached'] += 1
            return None

        try:
            text = self.normalize_text(text)
            match = self.pattern.match(text)
            
            if not match:
                alt_match = self.alternative_parse(text)
                if not alt_match:
                    raise ValueError(f"Could not parse comment: {text[:100]}...")
                match = alt_match

            data = match.groupdict()
            comment = Comment(
                username=data['username'].strip(),
                time=self.normalize_time(data['time']),
                content=self.clean_content(data['content']),
                likes=self.parse_likes(data.get('likes', '0')),
                level=level,
                parent_id=parent_id
            )

            # Анализ тональности и метаданных
            comment.sentiment = self.analyze_sentiment(comment.content)
            self.extract_metadata(comment)
            
            self.stats['total_comments'] += 1
            return comment

        except Exception as e:
            logger.error(f"Error processing comment: {str(e)}", exc_info=True)
            self.stats['failed_parses'] += 1
            return self.create_damaged_comment()

    def alternative_parse(self, text: str) -> Optional[re.Match]:
        """Альтернативный метод парсинга для сложных случаев"""
        alternative_patterns = [
            # Более простой паттерн
            r'(?P<username>[\w\u0400-\u04FF.-]+)\s*(?P<content>.*?)(?P<time>\d+\s+\w+\.?)(?P<likes>\d+)?',
            # Паттерн для мобильной версии
            r'(?P<username>[\w\u0400-\u04FF.-]+)\s*(?P<content>.*?)(?P<time>\d+\s+\w+)(?:Like)?(?P<likes>\d+)?'
        ]
        
        for pattern in alternative_patterns:
            try:
                match = re.compile(pattern, re.VERBOSE | re.DOTALL).match(text)
                if match:
                    return match
            except Exception:
                continue
        return None

    def parse_likes(self, likes_str: str) -> int:
        """Безопасный парсинг количества лайков"""
        try:
            return int(re.sub(r'\D', '', likes_str) or 0)
        except (ValueError, TypeError):
            return 0

    def create_damaged_comment(self) -> Comment:
        """Создание заглушки для поврежденного комментария"""
        return Comment(
            username="[damaged]",
            time="unknown",
            content="[Поврежденные данные]",
            is_deleted=True
        )

    def validate_input(self, text: str) -> bool:
        """Валидация входного текста"""
        if not text or not isinstance(text, str):
            logger.error("Invalid input: text must be non-empty string")
            return False
        if len(text) > 50000:
            logger.error("Input text too large")
            return False
        return True

    def format_comment(self, comment: Comment, index: int) -> str:
        """Форматирование комментария для вывода"""
        try:
            if comment.is_deleted:
                return f'{index}. "[УДАЛЕНО]"'

            emoji_str = ' '.join(comment.emojis) if comment.emojis else ''
            mentions_str = ', '.join(comment.mentions) if comment.mentions else ''
            hashtags_str = ', '.join(comment.hashtags) if comment.hashtags else ''

            return (
                f'{index}. "{comment.username}" "{comment.time}" '
                f'"{comment.content}" "Лайки: {comment.likes}" '
                f'"Настроение: {comment.sentiment}" '
                f'"Эмодзи: {emoji_str}" '
                f'"Упоминания: {mentions_str}" '
                f'"Хэштеги: {hashtags_str}"'
            )
        except Exception as e:
            logger.error(f"Error formatting comment: {str(e)}")
            return f'{index}. "[ОШИБКА ФОРМАТИРОВАНИЯ]"'

    def process_comments(self, text: str) -> List[str]:
        """Обработка всех комментариев"""
        try:
            self.stats = self.initialize_stats()
            text = self.normalize_text(text)
            raw_comments = text.split('ОтветитьНравится')
            formatted_comments = []
            
            for i, raw_comment in enumerate(raw_comments, 1):
                if not raw_comment.strip():
                    continue

                comment = self.process_comment(raw_comment)
                if comment:
                    formatted_comments.append(self.format_comment(comment, i))

            return formatted_comments
        except Exception as e:
            logger.error(f"Error processing comments: {str(e)}")
            return ["[ОШИБКА ОБРАБОТКИ КОММЕНТАРИЕВ]"]

def create_interface():
    """Создание интерфейса Gradio"""
    analyzer = InstagramCommentAnalyzer()

    def analyze_text(text: str):
        formatted_comments = analyzer.process_comments(text)
        return "\n".join(formatted_comments)

    iface = gr.Interface(
        fn=analyze_text,
        inputs=gr.Textbox(
            lines=10,
            placeholder="Вставьте текст комментариев здесь...",
            label="Входной текст"
        ),
        outputs=gr.Textbox(
            lines=20,
            placeholder="Результаты анализа будут отображены здесь...",
            label="Результаты анализа"
        ),
        title="Instagram Comment Analyzer",
        description="Анализатор комментариев Instagram с поддержкой эмодзи и мультиязычности",
        theme="default",
        analytics_enabled=False,
    )
    return iface

def main():
    """Основная функция запуска приложения"""
    try:
        interface = create_interface()
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            debug=True
        )
    except Exception as e:
        logger.error(f"Application failed to start: {str(e)}")
        raise

if __name__ == "__main__":
    main()