File size: 9,976 Bytes
b4bbaee
 
cbff93c
 
 
e5c8ff6
 
 
cbff93c
e5c8ff6
 
 
cbff93c
e5c8ff6
 
 
 
 
 
 
 
cbff93c
e5c8ff6
 
 
 
 
 
 
 
 
cbff93c
e5c8ff6
 
 
b4bbaee
e5c8ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbff93c
e5c8ff6
 
 
 
 
 
 
 
 
 
 
cbff93c
e5c8ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbff93c
e5c8ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bbaee
cbff93c
e5c8ff6
cbff93c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
from transformers import pipeline
import logging
from typing import Tuple, List, Optional

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class CommentAnalyzer:
    def __init__(self):
        """Initialize the analyzer with sentiment model and compile regex patterns"""
        try:
            self.sentiment_model = pipeline("sentiment-analysis")
        except Exception as e:
            logger.error(f"Failed to load sentiment model: {e}")
            raise

        # Compile regex patterns for better performance
        self.mention_pattern = re.compile(r'@[\w\.]+')
        self.comment_pattern = re.compile(
            r'Фото профиля\s+(.+?)\s+'  # Username
            r'((?:(?!Фото профиля).)+?)\s+'  # Comment text
            r'(\d+)?\s*(?:нравится|like[s]?)?\s*'  # Likes count
            r'(\d+)\s*(?:н|w)'  # Week number
            , re.DOTALL
        )

    def clean_text(self, text: str) -> str:
        """Clean text by removing extra whitespace and normalizing line breaks"""
        return ' '.join(text.split())

    def count_emojis(self, text: str) -> int:
        """Count the number of emoji characters in text"""
        return len([c for c in text if c in emoji.EMOJI_DATA])

    def extract_mentions(self, text: str) -> List[str]:
        """Extract @mentions from text"""
        return self.mention_pattern.findall(text)

    def analyze_sentiment(self, text: str) -> str:
        """Analyze text sentiment using the loaded model"""
        try:
            result = self.sentiment_model(text[:512])  # Limit text length for model
            sentiment = result[0]['label']
            if sentiment == 'POSITIVE':
                return 'positive'
            elif sentiment == 'NEGATIVE':
                return 'negative'
            return 'neutral'
        except Exception as e:
            logger.warning(f"Sentiment analysis failed: {e}")
            return 'neutral'

    def extract_comment_data(self, comment_block: str) -> Tuple[Optional[str], Optional[str], int, int]:
        """
        Extract structured data from a comment block
        Returns: (username, comment_text, likes_count, week_number)
        """
        match = self.comment_pattern.search(comment_block)
        if not match:
            return None, None, 0, 0
            
        username, comment, likes, week = match.groups()
        return (
            username.strip(),
            self.clean_text(comment),
            int(likes or 0),
            int(week or 0)
        )

    def analyze_post(self, 
                    content_type: str,
                    link_to_post: str,
                    post_likes: int,
                    post_date: str,
                    description: str,
                    comment_count: int,
                    all_comments: str) -> Tuple[str, str, str, str, str]:
        """
        Analyze Instagram post comments and generate comprehensive analytics
        
        Args:
            content_type: Type of content ("Photo" or "Video")
            link_to_post: URL of the post
            post_likes: Number of likes on the post
            post_date: Date of post publication
            description: Post description/caption
            comment_count: Total number of comments
            all_comments: Raw text containing all comments
            
        Returns:
            Tuple containing:
            - Analytics summary
            - List of usernames
            - List of comments
            - Chronological list of likes
            - Total likes count
        """
        try:
            # Split comments into blocks
            comments_blocks = [block for block in re.split(r'(?=Фото профиля)', all_comments) if block.strip()]
            
            # Initialize data containers
            data = {
                'usernames': [],
                'comments': [],
                'likes': [],
                'weeks': [],
                'emojis': 0,
                'mentions': [],
                'sentiments': [],
                'lengths': []
            }
            
            # Process each comment block
            for block in comments_blocks:
                username, comment, like_count, week = self.extract_comment_data(block)
                if username and comment:
                    data['usernames'].append(username)
                    data['comments'].append(comment)
                    data['likes'].append(like_count)
                    data['weeks'].append(week)
                    
                    # Collect metrics
                    data['emojis'] += self.count_emojis(comment)
                    data['mentions'].extend(self.extract_mentions(comment))
                    data['sentiments'].append(self.analyze_sentiment(comment))
                    data['lengths'].append(len(comment))
            
            # Calculate analytics
            total_comments = len(data['comments'])
            if total_comments == 0:
                raise ValueError("No valid comments found in input")
                
            analytics = {
                'avg_length': sum(data['lengths']) / total_comments,
                'sentiment_dist': Counter(data['sentiments']),
                'active_users': Counter(data['usernames']).most_common(5),
                'top_mentions': Counter(data['mentions']).most_common(5),
                'avg_likes': sum(data['likes']) / total_comments,
                'weeks_range': (min(data['weeks']), max(data['weeks'])),
                'total_likes': sum(data['likes'])
            }
            
            # Generate summary
            summary = self._format_analytics_summary(
                content_type, link_to_post, data, analytics, total_comments
            )
            
            return (
                summary,
                '\n'.join(data['usernames']),
                '\n'.join(data['comments']),
                '\n'.join(map(str, data['likes'])),
                str(analytics['total_likes'])
            )
            
        except Exception as e:
            logger.error(f"Error analyzing post: {e}", exc_info=True)
            return (f"Error during analysis: {str(e)}", "", "", "", "0")

    def _format_analytics_summary(self, content_type, link, data, analytics, total_comments):
        """Format analytics data into a readable summary"""
        return f"""
Content Type: {content_type}
Link to Post: {link}

ОСНОВНАЯ СТАТИСТИКА:
- Всего комментариев: {total_comments}
- Всего лайков на комментариях: {analytics['total_likes']}
- Среднее количество лайков: {analytics['avg_likes']:.1f}
- Период активности: {analytics['weeks_range'][0]}-{analytics['weeks_range'][1]} недель

АНАЛИЗ КОНТЕНТА:
- Средняя длина комментария: {analytics['avg_length']:.1f} символов
- Всего эмодзи использовано: {data['emojis']}
- Тональность комментариев:
  * Позитивных: {analytics['sentiment_dist']['positive']}
  * Нейтральных: {analytics['sentiment_dist']['neutral']}
  * Негативных: {analytics['sentiment_dist']['negative']}

АКТИВНОСТЬ ПОЛЬЗОВАТЕЛЕЙ:
Самые активные комментаторы:
{chr(10).join(f"- {user}: {count} комментариев" for user, count in analytics['active_users'])}

Самые упоминаемые пользователи:
{chr(10).join(f"- {user}: {count} упоминаний" for user, count in analytics['top_mentions'] if user)}

ВОВЛЕЧЕННОСТЬ:
- Процент комментариев с лайками: {(sum(1 for l in data['likes'] if l > 0) / total_comments * 100):.1f}%
- Процент комментариев с эмодзи: {(sum(1 for c in data['comments'] if self.count_emojis(c) > 0) / total_comments * 100):.1f}%
"""

def create_interface():
    """Create and configure the Gradio interface"""
    analyzer = CommentAnalyzer()
    
    iface = gr.Interface(
        fn=analyzer.analyze_post,
        inputs=[
            gr.Radio(
                choices=["Photo", "Video"],
                label="Content Type",
                value="Photo"
            ),
            gr.Textbox(
                label="Link to Post",
                placeholder="Введите ссылку на пост"
            ),
            gr.Number(
                label="Likes",
                value=0
            ),
            gr.Textbox(
                label="Post Date",
                placeholder="Введите дату публикации"
            ),
            gr.Textbox(
                label="Description",
                placeholder="Введите описание поста",
                lines=3
            ),
            gr.Number(
                label="Total Comment Count",
                value=0
            ),
            gr.Textbox(
                label="All Comments",
                placeholder="Вставьте комментарии",
                lines=10
            )
        ],
        outputs=[
            gr.Textbox(label="Analytics Summary", lines=20),
            gr.Textbox(label="Usernames (Output 1)", lines=5),
            gr.Textbox(label="Comments (Output 2)", lines=5),
            gr.Textbox(label="Likes Chronology (Output 3)", lines=5),
            gr.Textbox(label="Total Likes on Comments (Output 4)")
        ],
        title="Instagram Comment Analyzer Pro",
        description="Расширенный анализатор комментариев Instagram с детальной аналитикой"
    )
    return iface

if __name__ == "__main__":
    iface = create_interface()
    iface.launch()