Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,8 @@ logger = logging.getLogger(__name__)
|
|
15 |
|
16 |
def clean_text(text):
|
17 |
"""Очищает текст от лишних пробелов и переносов строк"""
|
18 |
-
|
|
|
19 |
|
20 |
def count_emojis(text):
|
21 |
"""Подсчитывает количество эмодзи в тексте"""
|
@@ -34,19 +35,28 @@ def analyze_sentiment(text):
|
|
34 |
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
|
35 |
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
|
36 |
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
|
37 |
-
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший'
|
|
|
|
|
38 |
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
|
39 |
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
|
40 |
-
'разочарован', 'печаль', 'грустно'
|
|
|
41 |
|
42 |
text_lower = text.lower()
|
|
|
|
|
43 |
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
|
44 |
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
|
45 |
|
|
|
46 |
exclamation_count = text.count('!')
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
|
|
50 |
if positive_count > negative_count:
|
51 |
return 'positive'
|
52 |
elif negative_count > positive_count:
|
@@ -54,62 +64,122 @@ def analyze_sentiment(text):
|
|
54 |
return 'neutral'
|
55 |
|
56 |
def extract_comment_data(comment_text):
|
57 |
-
"""Извлекает данные из отдельного комментария"""
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
if not username_match:
|
66 |
-
return None, None, 0, 0
|
67 |
-
|
68 |
-
username = username_match.group(1).strip()
|
69 |
-
|
70 |
-
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
|
71 |
-
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
|
72 |
-
if comment_match:
|
73 |
-
comment = clean_text(comment_match.group(1))
|
74 |
-
comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
|
75 |
-
comment = re.sub(r'^@[\w\.]+ ', '', comment)
|
76 |
-
else:
|
77 |
-
comment = ""
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
likes = 0
|
83 |
likes_patterns = [
|
84 |
r"(\d+) отметк[аи] \"Нравится\"",
|
85 |
r"Нравится: (\d+)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
]
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
for pattern in likes_patterns:
|
89 |
likes_match = re.search(pattern, comment_text)
|
90 |
if likes_match:
|
91 |
likes = int(likes_match.group(1))
|
92 |
break
|
93 |
-
|
94 |
return username, comment.strip(), likes, weeks
|
|
|
95 |
except Exception as e:
|
96 |
logger.error(f"Error extracting comment data: {e}")
|
97 |
return None, None, 0, 0
|
98 |
|
99 |
-
def analyze_post(content_type, link_to_post, post_likes, post_date
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
try:
|
101 |
-
#
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
|
|
107 |
|
|
|
108 |
usernames = []
|
109 |
comments = []
|
110 |
likes = []
|
111 |
weeks = []
|
112 |
-
|
113 |
total_emojis = 0
|
114 |
mentions = []
|
115 |
sentiments = []
|
@@ -124,12 +194,13 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
124 |
continue
|
125 |
|
126 |
username, comment, like_count, week_number = extract_comment_data(block)
|
127 |
-
if username and
|
128 |
usernames.append(username)
|
129 |
comments.append(comment)
|
130 |
likes.append(str(like_count))
|
131 |
weeks.append(week_number)
|
132 |
|
|
|
133 |
total_emojis += count_emojis(comment)
|
134 |
mentions.extend(extract_mentions(comment))
|
135 |
sentiment = analyze_sentiment(comment)
|
@@ -140,6 +211,7 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
140 |
words_per_comment.append(len(words))
|
141 |
all_words.extend(words)
|
142 |
|
|
|
143 |
if username not in user_engagement:
|
144 |
user_engagement[username] = {
|
145 |
'comments': 0,
|
@@ -147,8 +219,9 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
147 |
'emoji_usage': 0,
|
148 |
'avg_length': 0,
|
149 |
'sentiments': [],
|
150 |
-
'weeks': []
|
151 |
}
|
|
|
152 |
user_stats = user_engagement[username]
|
153 |
user_stats['comments'] += 1
|
154 |
user_stats['total_likes'] += like_count
|
@@ -157,10 +230,10 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
157 |
user_stats['sentiments'].append(sentiment)
|
158 |
user_stats['weeks'].append(week_number)
|
159 |
|
160 |
-
#
|
161 |
total_comments = len(comments)
|
162 |
-
if total_comments
|
163 |
-
|
164 |
|
165 |
# Обновление статистики пользователей
|
166 |
for username in user_engagement:
|
@@ -170,47 +243,49 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
170 |
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
|
171 |
stats['activity_period'] = max(stats['weeks']) - min(stats['weeks']) if stats['weeks'] else 0
|
172 |
|
173 |
-
#
|
174 |
avg_comment_length = sum(comment_lengths) / total_comments
|
175 |
sentiment_distribution = Counter(sentiments)
|
176 |
most_active_users = Counter(usernames).most_common(5)
|
177 |
most_mentioned = Counter(mentions).most_common(5)
|
178 |
avg_likes = sum(map(int, likes)) / len(likes) if likes else 0
|
179 |
-
earliest_week = max(weeks) if weeks else 0
|
180 |
-
latest_week = min(weeks) if weeks else 0
|
181 |
-
|
182 |
-
# Расширенная статистика
|
183 |
-
median_comment_length = statistics.median(comment_lengths)
|
184 |
-
avg_words_per_comment = sum(words_per_comment) / total_comments
|
185 |
-
common_words = Counter(all_words).most_common(10)
|
186 |
|
187 |
-
#
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
elif week >= max(weeks) - 2 * period_length:
|
200 |
-
engagement_periods['middle'].append(i)
|
201 |
-
else:
|
202 |
-
engagement_periods['late'].append(i)
|
203 |
-
|
204 |
-
period_stats = {
|
205 |
-
period: {
|
206 |
-
'comments': len(indices),
|
207 |
-
'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
|
208 |
-
'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
|
209 |
}
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
# Подготовка
|
214 |
csv_data = {
|
215 |
'metadata': {
|
216 |
'content_type': content_type,
|
@@ -218,27 +293,22 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
218 |
'post_likes': post_likes,
|
219 |
'post_date': post_date,
|
220 |
'total_comments': total_comments,
|
221 |
-
'expected_comments': comment_count
|
222 |
-
'hidden_comments': hidden_comments
|
223 |
},
|
224 |
'basic_stats': {
|
225 |
-
'avg_comment_length': avg_comment_length,
|
226 |
-
'median_comment_length':
|
227 |
-
'avg_words':
|
228 |
'total_emojis': total_emojis,
|
229 |
-
'avg_likes': avg_likes
|
230 |
-
},
|
231 |
-
'sentiment_stats': {
|
232 |
-
'positive': sentiment_distribution['positive'],
|
233 |
-
'neutral': sentiment_distribution['neutral'],
|
234 |
-
'negative': sentiment_distribution['negative']
|
235 |
},
|
|
|
236 |
'period_analysis': period_stats,
|
237 |
'top_users': dict(most_active_users),
|
238 |
'top_mentioned': dict(most_mentioned)
|
239 |
}
|
240 |
|
241 |
-
#
|
242 |
output = StringIO()
|
243 |
writer = csv.writer(output)
|
244 |
for section, data in csv_data.items():
|
@@ -248,7 +318,7 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
248 |
writer.writerow([])
|
249 |
csv_output = output.getvalue()
|
250 |
|
251 |
-
#
|
252 |
analytics_summary = (
|
253 |
f"CSV DATA:\n{csv_output}\n\n"
|
254 |
f"ДЕТАЛЬНЫЙ АНАЛИЗ:\n"
|
@@ -256,10 +326,18 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
256 |
f"Ссылка: {link_to_post}\n\n"
|
257 |
f"СТАТИСТИКА:\n"
|
258 |
f"- Всего комментариев: {total_comments} (ожидалось: {comment_count})\n"
|
259 |
-
f"-
|
260 |
-
f"-
|
261 |
-
f"-
|
262 |
-
f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
f"АНАЛИЗ КОНТЕНТА:\n"
|
264 |
f"- Средняя длина: {avg_comment_length:.1f} символов\n"
|
265 |
f"- Медиана длины: {median_comment_length} символов\n"
|
|
|
15 |
|
16 |
def clean_text(text):
|
17 |
"""Очищает текст от лишних пробелов и переносов строк"""
|
18 |
+
text = re.sub(r'\s+', ' ', text)
|
19 |
+
return text.strip()
|
20 |
|
21 |
def count_emojis(text):
|
22 |
"""Подсчитывает количество эмодзи в тексте"""
|
|
|
35 |
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
|
36 |
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
|
37 |
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
|
38 |
+
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший',
|
39 |
+
'amazing', 'wonderful', 'great', 'perfect', 'love', 'beautiful']
|
40 |
+
|
41 |
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
|
42 |
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
|
43 |
+
'разочарован', 'печаль', 'грустно', 'bad', 'worst',
|
44 |
+
'terrible', 'awful', 'sad', 'disappointed']
|
45 |
|
46 |
text_lower = text.lower()
|
47 |
+
|
48 |
+
# Подсчет индикаторов настроения
|
49 |
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
|
50 |
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
|
51 |
|
52 |
+
# Учет восклицательных знаков
|
53 |
exclamation_count = text.count('!')
|
54 |
+
if positive_count > negative_count:
|
55 |
+
positive_count += exclamation_count * 0.5
|
56 |
+
elif negative_count > positive_count:
|
57 |
+
negative_count += exclamation_count * 0.5
|
58 |
|
59 |
+
# Определение итогового настроения
|
60 |
if positive_count > negative_count:
|
61 |
return 'positive'
|
62 |
elif negative_count > positive_count:
|
|
|
64 |
return 'neutral'
|
65 |
|
66 |
def extract_comment_data(comment_text):
|
67 |
+
"""Извлекает данные из отдельного комментария с поддержкой различных форматов"""
|
68 |
try:
|
69 |
+
# Паттерны для извлечения данных
|
70 |
+
username_patterns = [
|
71 |
+
r"Фото профиля ([^\n]+)",
|
72 |
+
r"^([^\s]+)\s+",
|
73 |
+
r"@([^\s]+)\s+",
|
74 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
time_patterns = [
|
77 |
+
r"(\d+)\s*(?:ч|нед)\.",
|
78 |
+
r"(\d+)\s*(?:h|w)",
|
79 |
+
r"(\d+)\s*(?:час|hour|week)",
|
80 |
+
]
|
81 |
|
|
|
82 |
likes_patterns = [
|
83 |
r"(\d+) отметк[аи] \"Нравится\"",
|
84 |
r"Нравится: (\d+)",
|
85 |
+
r"(\d+) отметка \"Нравится\"",
|
86 |
+
r"\"Нравится\": (\d+)",
|
87 |
+
r"likes?: (\d+)",
|
88 |
+
]
|
89 |
+
|
90 |
+
# Поиск имени пользователя
|
91 |
+
username = None
|
92 |
+
for pattern in username_patterns:
|
93 |
+
username_match = re.search(pattern, comment_text)
|
94 |
+
if username_match:
|
95 |
+
username = username_match.group(1).strip()
|
96 |
+
break
|
97 |
+
|
98 |
+
if not username:
|
99 |
+
return None, None, 0, 0
|
100 |
+
|
101 |
+
# Извлечение комментария
|
102 |
+
comment = comment_text
|
103 |
+
|
104 |
+
# Удаление метаданных
|
105 |
+
metadata_patterns = [
|
106 |
+
r"Фото профиля [^\n]+\n",
|
107 |
+
r"\d+\s*(?:ч|нед|h|w|час|hour|week)\.",
|
108 |
+
r"Нравится:?\s*\d+",
|
109 |
+
r"\d+ отметк[аи] \"Нравится\"",
|
110 |
+
r"Ответить",
|
111 |
+
r"Показать перевод",
|
112 |
+
r"Скрыть все ответы",
|
113 |
+
r"Смотреть все ответы \(\d+\)",
|
114 |
+
username
|
115 |
]
|
116 |
|
117 |
+
for pattern in metadata_patterns:
|
118 |
+
comment = re.sub(pattern, '', comment)
|
119 |
+
|
120 |
+
comment = clean_text(comment)
|
121 |
+
|
122 |
+
# Определение времени публикации
|
123 |
+
weeks = 0
|
124 |
+
for pattern in time_patterns:
|
125 |
+
time_match = re.search(pattern, comment_text)
|
126 |
+
if time_match:
|
127 |
+
time_value = int(time_match.group(1))
|
128 |
+
if any(unit in comment_text.lower() for unit in ['нед', 'w', 'week']):
|
129 |
+
weeks = time_value
|
130 |
+
else:
|
131 |
+
weeks = time_value / (24 * 7) # конвертация часов в недели
|
132 |
+
break
|
133 |
+
|
134 |
+
# Подсчет лайков
|
135 |
+
likes = 0
|
136 |
for pattern in likes_patterns:
|
137 |
likes_match = re.search(pattern, comment_text)
|
138 |
if likes_match:
|
139 |
likes = int(likes_match.group(1))
|
140 |
break
|
141 |
+
|
142 |
return username, comment.strip(), likes, weeks
|
143 |
+
|
144 |
except Exception as e:
|
145 |
logger.error(f"Error extracting comment data: {e}")
|
146 |
return None, None, 0, 0
|
147 |
|
148 |
+
def analyze_post(content_type: str, link_to_post: str, post_likes: int, post_date: str,
|
149 |
+
description: str, comment_count: int, all_comments: str) -> Tuple[str, str, str, str, str]:
|
150 |
+
"""
|
151 |
+
Анализирует пост Instagram и его комментарии
|
152 |
+
|
153 |
+
Args:
|
154 |
+
content_type: Тип контента (фото/видео)
|
155 |
+
link_to_post: Ссылка на пост
|
156 |
+
post_likes: Количество лайков поста
|
157 |
+
post_date: Дата публикации
|
158 |
+
description: Описание поста
|
159 |
+
comment_count: Ожидаемое количество комментариев
|
160 |
+
all_comments: Текст всех комментариев
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
Tuple[str, str, str, str, str]: Кортеж с результатами анализа
|
164 |
+
"""
|
165 |
try:
|
166 |
+
# Разделение на блоки комментариев
|
167 |
+
comment_patterns = [
|
168 |
+
r"(?=Фото профиля)",
|
169 |
+
r"(?=\n\s*[a-zA-Z0-9._]+\s+[^\n]+\n)",
|
170 |
+
r"(?=^[a-zA-Z0-9._]+\s+[^\n]+\n)",
|
171 |
+
r"(?=@[a-zA-Z0-9._]+\s+[^\n]+\n)"
|
172 |
+
]
|
173 |
|
174 |
+
split_pattern = '|'.join(comment_patterns)
|
175 |
+
comments_blocks = re.split(split_pattern, all_comments)
|
176 |
+
comments_blocks = [block.strip() for block in comments_blocks if block and block.strip()]
|
177 |
|
178 |
+
# Инициализация переменных для анализа
|
179 |
usernames = []
|
180 |
comments = []
|
181 |
likes = []
|
182 |
weeks = []
|
|
|
183 |
total_emojis = 0
|
184 |
mentions = []
|
185 |
sentiments = []
|
|
|
194 |
continue
|
195 |
|
196 |
username, comment, like_count, week_number = extract_comment_data(block)
|
197 |
+
if username and comment:
|
198 |
usernames.append(username)
|
199 |
comments.append(comment)
|
200 |
likes.append(str(like_count))
|
201 |
weeks.append(week_number)
|
202 |
|
203 |
+
# Сбор статистики
|
204 |
total_emojis += count_emojis(comment)
|
205 |
mentions.extend(extract_mentions(comment))
|
206 |
sentiment = analyze_sentiment(comment)
|
|
|
211 |
words_per_comment.append(len(words))
|
212 |
all_words.extend(words)
|
213 |
|
214 |
+
# Обновление статистики пользователя
|
215 |
if username not in user_engagement:
|
216 |
user_engagement[username] = {
|
217 |
'comments': 0,
|
|
|
219 |
'emoji_usage': 0,
|
220 |
'avg_length': 0,
|
221 |
'sentiments': [],
|
222 |
+
'weeks': []
|
223 |
}
|
224 |
+
|
225 |
user_stats = user_engagement[username]
|
226 |
user_stats['comments'] += 1
|
227 |
user_stats['total_likes'] += like_count
|
|
|
230 |
user_stats['sentiments'].append(sentiment)
|
231 |
user_stats['weeks'].append(week_number)
|
232 |
|
233 |
+
# Расчет статистики
|
234 |
total_comments = len(comments)
|
235 |
+
if total_comments == 0:
|
236 |
+
return "No comments found", "", "", "", "0"
|
237 |
|
238 |
# Обновление статистики пользователей
|
239 |
for username in user_engagement:
|
|
|
243 |
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
|
244 |
stats['activity_period'] = max(stats['weeks']) - min(stats['weeks']) if stats['weeks'] else 0
|
245 |
|
246 |
+
# Базовая статистика
|
247 |
avg_comment_length = sum(comment_lengths) / total_comments
|
248 |
sentiment_distribution = Counter(sentiments)
|
249 |
most_active_users = Counter(usernames).most_common(5)
|
250 |
most_mentioned = Counter(mentions).most_common(5)
|
251 |
avg_likes = sum(map(int, likes)) / len(likes) if likes else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
+
# Временной анализ
|
254 |
+
if weeks:
|
255 |
+
earliest_week = max(weeks)
|
256 |
+
latest_week = min(weeks)
|
257 |
+
week_range = earliest_week - latest_week
|
258 |
+
|
259 |
+
# Разделение на периоды
|
260 |
+
period_length = week_range / 3 if week_range > 0 else 1
|
261 |
+
engagement_periods = {
|
262 |
+
'early': [],
|
263 |
+
'middle': [],
|
264 |
+
'late': []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
}
|
266 |
+
|
267 |
+
for i, week in enumerate(weeks):
|
268 |
+
if week >= earliest_week - period_length:
|
269 |
+
engagement_periods['early'].append(i)
|
270 |
+
elif week >= earliest_week - 2 * period_length:
|
271 |
+
engagement_periods['middle'].append(i)
|
272 |
+
else:
|
273 |
+
engagement_periods['late'].append(i)
|
274 |
+
|
275 |
+
period_stats = {
|
276 |
+
period: {
|
277 |
+
'comments': len(indices),
|
278 |
+
'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
|
279 |
+
'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
|
280 |
+
}
|
281 |
+
for period, indices in engagement_periods.items()
|
282 |
+
}
|
283 |
+
else:
|
284 |
+
period_stats = {}
|
285 |
+
earliest_week = 0
|
286 |
+
latest_week = 0
|
287 |
|
288 |
+
# Подготовка CSV
|
289 |
csv_data = {
|
290 |
'metadata': {
|
291 |
'content_type': content_type,
|
|
|
293 |
'post_likes': post_likes,
|
294 |
'post_date': post_date,
|
295 |
'total_comments': total_comments,
|
296 |
+
'expected_comments': comment_count
|
|
|
297 |
},
|
298 |
'basic_stats': {
|
299 |
+
'avg_comment_length': round(avg_comment_length, 2),
|
300 |
+
'median_comment_length': statistics.median(comment_lengths),
|
301 |
+
'avg_words': round(sum(words_per_comment) / total_comments, 2),
|
302 |
'total_emojis': total_emojis,
|
303 |
+
'avg_likes': round(avg_likes, 2)
|
|
|
|
|
|
|
|
|
|
|
304 |
},
|
305 |
+
'sentiment_stats': dict(Counter(sentiments)),
|
306 |
'period_analysis': period_stats,
|
307 |
'top_users': dict(most_active_users),
|
308 |
'top_mentioned': dict(most_mentioned)
|
309 |
}
|
310 |
|
311 |
+
# Создание CSV строки
|
312 |
output = StringIO()
|
313 |
writer = csv.writer(output)
|
314 |
for section, data in csv_data.items():
|
|
|
318 |
writer.writerow([])
|
319 |
csv_output = output.getvalue()
|
320 |
|
321 |
+
# Формирование отчета
|
322 |
analytics_summary = (
|
323 |
f"CSV DATA:\n{csv_output}\n\n"
|
324 |
f"ДЕТАЛЬНЫЙ АНАЛИЗ:\n"
|
|
|
326 |
f"Ссылка: {link_to_post}\n\n"
|
327 |
f"СТАТИСТИКА:\n"
|
328 |
f"- Всего комментариев: {total_comments} (ожидалось: {comment_count})\n"
|
329 |
+
f"- Всего лайков на комментариях: {sum(map(int, likes))}\n"
|
330 |
+
f"- Среднее лайков на комментарий: {avg_likes:.1f}\n"
|
331 |
+
f"- Период активности: {earliest_week}-{latest_week} недель\n\n"
|
332 |
+
f"АНАЛИЗ КОНТЕНТА:\n"
|
333 |
+
f"- Средняя длина комментария: {avg_comment_length:.1f} символов\n"
|
334 |
+
f"- Медиана длины: {statistics.median(comment_lengths)} символов\n"
|
335 |
+
f"- Среднее количество слов: {sum(words_per_comment) / total_comments:.1f}\n"
|
336 |
+
f"- Всего эмодзи: {total_emojis}\n"
|
337 |
+
f"- Тональность:\n"
|
338 |
+
f" * Позитивных: {sentiment_distribution['positive']}\n"
|
339 |
+
f" * Нейтральных: {sentiment_distribution['neutral']}\n"
|
340 |
+
f" * Негативных: {sentiment_distribution['negative']}\n\n"
|
341 |
f"АНАЛИЗ КОНТЕНТА:\n"
|
342 |
f"- Средняя длина: {avg_comment_length:.1f} символов\n"
|
343 |
f"- Медиана длины: {median_comment_length} символов\n"
|