Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ import emoji
|
|
6 |
import logging
|
7 |
from typing import Tuple, List, Optional
|
8 |
import statistics
|
|
|
|
|
|
|
9 |
|
10 |
# Настройка логирования
|
11 |
logging.basicConfig(level=logging.INFO)
|
@@ -25,9 +28,8 @@ def extract_mentions(text):
|
|
25 |
|
26 |
def get_comment_words(text):
|
27 |
"""Получает список слов из комментария для анализа"""
|
28 |
-
# Очищаем текст от эмодзи и приводим к нижнему регистру
|
29 |
words = re.findall(r'\w+', text.lower())
|
30 |
-
return [w for w in words if len(w) > 2]
|
31 |
|
32 |
def analyze_sentiment(text):
|
33 |
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
|
@@ -42,23 +44,34 @@ def analyze_sentiment(text):
|
|
42 |
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
|
43 |
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
|
44 |
|
45 |
-
# Учитываем восклицательные знаки как усилители эмоций
|
46 |
exclamation_count = text.count('!')
|
47 |
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
|
48 |
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return 'positive'
|
52 |
-
elif
|
53 |
return 'negative'
|
54 |
return 'neutral'
|
55 |
|
56 |
def extract_comment_data(comment_text):
|
57 |
"""
|
58 |
Извлекает данные из отдельного комментария
|
59 |
-
Возвращает (username, comment_text, likes_count, week_number)
|
60 |
"""
|
61 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Извлекаем имя пользователя
|
63 |
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
64 |
if not username_match:
|
@@ -66,12 +79,12 @@ def extract_comment_data(comment_text):
|
|
66 |
|
67 |
username = username_match.group(1).strip()
|
68 |
|
69 |
-
#
|
70 |
-
comment_pattern = fr"{username}\n(.*?)(?:\d+ нед\.)"
|
71 |
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
|
72 |
if comment_match:
|
73 |
comment = clean_text(comment_match.group(1))
|
74 |
-
comment = re.sub(fr'^{username}\s*', '', comment)
|
75 |
comment = re.sub(r'^@[\w\.]+ ', '', comment)
|
76 |
else:
|
77 |
comment = ""
|
@@ -80,11 +93,12 @@ def extract_comment_data(comment_text):
|
|
80 |
week_match = re.search(r'(\d+) нед\.', comment_text)
|
81 |
weeks = int(week_match.group(1)) if week_match else 0
|
82 |
|
83 |
-
#
|
84 |
likes = 0
|
85 |
likes_patterns = [
|
86 |
r"(\d+) отметк[аи] \"Нравится\"",
|
87 |
r"Нравится: (\d+)",
|
|
|
88 |
]
|
89 |
|
90 |
for pattern in likes_patterns:
|
@@ -100,8 +114,8 @@ def extract_comment_data(comment_text):
|
|
100 |
|
101 |
def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
|
102 |
try:
|
103 |
-
#
|
104 |
-
comments_blocks = re.split(r'(?=Фото
|
105 |
comments_blocks = [block for block in comments_blocks if block.strip()]
|
106 |
|
107 |
# Основные списки для данных
|
@@ -117,12 +131,14 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
117 |
comment_lengths = []
|
118 |
words_per_comment = []
|
119 |
all_words = []
|
120 |
-
user_engagement = {}
|
|
|
|
|
121 |
|
122 |
# Обработка каждого комментария
|
123 |
for block in comments_blocks:
|
124 |
username, comment, like_count, week_number = extract_comment_data(block)
|
125 |
-
if username and comment:
|
126 |
usernames.append(username)
|
127 |
comments.append(comment)
|
128 |
likes.append(str(like_count))
|
@@ -130,11 +146,20 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
130 |
|
131 |
# Базовые метрики
|
132 |
total_emojis += count_emojis(comment)
|
133 |
-
|
|
|
134 |
sentiment = analyze_sentiment(comment)
|
135 |
sentiments.append(sentiment)
|
136 |
comment_lengths.append(len(comment))
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
# Расширенные метрики
|
139 |
words = get_comment_words(comment)
|
140 |
words_per_comment.append(len(words))
|
@@ -147,7 +172,10 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
147 |
'total_likes': 0,
|
148 |
'emoji_usage': 0,
|
149 |
'avg_length': 0,
|
150 |
-
'sentiments': []
|
|
|
|
|
|
|
151 |
}
|
152 |
user_stats = user_engagement[username]
|
153 |
user_stats['comments'] += 1
|
@@ -156,139 +184,95 @@ def analyze_post(content_type, link_to_post, post_likes, post_date, description,
|
|
156 |
user_stats['avg_length'] += len(comment)
|
157 |
user_stats['sentiments'].append(sentiment)
|
158 |
|
159 |
-
#
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
# Обновляем статистику пользователей
|
165 |
for username in user_engagement:
|
166 |
stats = user_engagement[username]
|
167 |
stats['avg_length'] /= stats['comments']
|
168 |
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
|
169 |
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
|
|
|
170 |
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
latest_week = min(weeks) if weeks else 0
|
179 |
-
|
180 |
-
# Расширенная статистика
|
181 |
-
median_comment_length = statistics.median(comment_lengths)
|
182 |
-
avg_words_per_comment = sum(words_per_comment) / total_comments
|
183 |
-
common_words = Counter(all_words).most_common(10)
|
184 |
-
|
185 |
-
# Анализ вовлеченности
|
186 |
-
engagement_metrics = {
|
187 |
-
'comments_with_likes': sum(1 for l in likes if int(l) > 0),
|
188 |
-
'comments_with_emoji': sum(1 for c in comments if count_emojis(c) > 0),
|
189 |
-
'comments_with_mentions': sum(1 for c in comments if extract_mentions(c)),
|
190 |
-
'avg_engagement_rate': statistics.mean([
|
191 |
-
stats['engagement_rate'] for stats in user_engagement.values()
|
192 |
-
])
|
193 |
}
|
194 |
|
195 |
-
#
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
comments_output = "\n".join(comments)
|
202 |
-
likes_chronology_output = "\n".join(likes)
|
203 |
-
total_likes_sum = sum(map(int, likes))
|
204 |
|
205 |
-
#
|
206 |
analytics_summary = (
|
|
|
|
|
207 |
f"Content Type: {content_type}\n"
|
208 |
f"Link to Post: {link_to_post}\n\n"
|
209 |
-
f"
|
210 |
-
f"
|
211 |
-
f"
|
212 |
-
f"
|
213 |
-
f"
|
214 |
-
f"
|
215 |
-
f"
|
216 |
-
f"
|
217 |
-
f"
|
218 |
-
f"
|
219 |
-
f"
|
220 |
-
f"
|
221 |
-
f"
|
222 |
-
f"
|
223 |
-
f"ПОПУЛЯРНЫЕ СЛОВА:\n"
|
224 |
-
+ "\n".join([f"- {word}: {count} раз" for word, count in common_words]) + "\n\n"
|
225 |
-
f"АКТИВНОСТЬ ПОЛЬЗОВАТЕЛЕЙ:\n"
|
226 |
-
f"Самые активные комментаторы:\n"
|
227 |
-
+ "\n".join([f"- {user}: {count} комментариев" for user, count in most_active_users]) + "\n\n"
|
228 |
-
f"Самые упоминаемые пользователи:\n"
|
229 |
-
+ "\n".join([f"- {user}: {count} упоминаний" for user, count in most_mentioned if user]) + "\n\n"
|
230 |
-
f"ВОВЛЕЧЕННОСТЬ:\n"
|
231 |
-
f"- Процент комментариев с лайками: {(engagement_metrics['comments_with_likes'] / total_comments * 100):.1f}%\n"
|
232 |
-
f"- Процент комментариев с эмодзи: {(engagement_metrics['comments_with_emoji'] / total_comments * 100):.1f}%\n"
|
233 |
-
f"- Процент комментариев с упоминаниями: {(engagement_metrics['comments_with_mentions'] / total_comments * 100):.1f}%\n"
|
234 |
-
f"- Средний рейтинг вовлеченности: {engagement_metrics['avg_engagement_rate']:.2f}\n\n"
|
235 |
-
f"ВРЕМЕННАЯ АКТИВНОСТЬ:\n"
|
236 |
-
f"Самые активные недели:\n"
|
237 |
-
+ "\n".join([f"- {week} неделя: {count} комментариев" for week, count in most_active_weeks])
|
238 |
)
|
239 |
|
240 |
-
return analytics_summary, usernames_output, comments_output, likes_chronology_output, str(
|
241 |
|
242 |
except Exception as e:
|
243 |
logger.error(f"Error in analyze_post: {e}", exc_info=True)
|
244 |
-
|
245 |
-
return error_message, error_message, error_message, error_message, "0"
|
246 |
|
247 |
# Создаем интерфейс Gradio
|
248 |
iface = gr.Interface(
|
249 |
fn=analyze_post,
|
250 |
inputs=[
|
251 |
-
gr.Radio(
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
),
|
256 |
-
gr.
|
257 |
-
|
258 |
-
placeholder="Введите ссылку на пост"
|
259 |
-
),
|
260 |
-
gr.Number(
|
261 |
-
label="Likes",
|
262 |
-
value=0
|
263 |
-
),
|
264 |
-
gr.Textbox(
|
265 |
-
label="Post Date",
|
266 |
-
placeholder="Введите дату публикации"
|
267 |
-
),
|
268 |
-
gr.Textbox(
|
269 |
-
label="Description",
|
270 |
-
placeholder="Введите описание поста",
|
271 |
-
lines=3
|
272 |
-
),
|
273 |
-
gr.Number(
|
274 |
-
label="Total Comment Count",
|
275 |
-
value=0
|
276 |
-
),
|
277 |
-
gr.Textbox(
|
278 |
-
label="All Comments",
|
279 |
-
placeholder="Вставьте комментарии",
|
280 |
-
lines=10
|
281 |
-
)
|
282 |
],
|
283 |
outputs=[
|
284 |
gr.Textbox(label="Analytics Summary", lines=20),
|
285 |
-
gr.Textbox(label="Usernames
|
286 |
-
gr.Textbox(label="Comments
|
287 |
-
gr.Textbox(label="Likes Chronology
|
288 |
-
gr.Textbox(label="Total Likes on Comments
|
289 |
],
|
290 |
-
title="Instagram Comment Analyzer
|
291 |
-
description="
|
292 |
)
|
293 |
|
294 |
if __name__ == "__main__":
|
|
|
6 |
import logging
|
7 |
from typing import Tuple, List, Optional
|
8 |
import statistics
|
9 |
+
import csv
|
10 |
+
from textblob import TextBlob
|
11 |
+
import numpy as np
|
12 |
|
13 |
# Настройка логирования
|
14 |
logging.basicConfig(level=logging.INFO)
|
|
|
28 |
|
29 |
def get_comment_words(text):
|
30 |
"""Получает список слов из комментария для анализа"""
|
|
|
31 |
words = re.findall(r'\w+', text.lower())
|
32 |
+
return [w for w in words if len(w) > 2]
|
33 |
|
34 |
def analyze_sentiment(text):
|
35 |
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
|
|
|
44 |
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
|
45 |
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
|
46 |
|
|
|
47 |
exclamation_count = text.count('!')
|
48 |
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
|
49 |
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
|
50 |
|
51 |
+
# Добавляем анализ через TextBlob для более точной оценки
|
52 |
+
blob = TextBlob(text)
|
53 |
+
sentiment_score = blob.sentiment.polarity
|
54 |
+
|
55 |
+
# Комбинируем оба подхода
|
56 |
+
final_score = (positive_count - negative_count) + sentiment_score
|
57 |
+
|
58 |
+
if final_score > 0:
|
59 |
return 'positive'
|
60 |
+
elif final_score < 0:
|
61 |
return 'negative'
|
62 |
return 'neutral'
|
63 |
|
64 |
def extract_comment_data(comment_text):
|
65 |
"""
|
66 |
Извлекает данные из отдельного комментария
|
|
|
67 |
"""
|
68 |
try:
|
69 |
+
# Проверка на скрытый комментарий
|
70 |
+
if 'Скрыто алгоритмами Instagram' in comment_text:
|
71 |
+
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
72 |
+
if username_match:
|
73 |
+
return username_match.group(1).strip(), "", 0, 0
|
74 |
+
|
75 |
# Извлекаем имя пользователя
|
76 |
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
|
77 |
if not username_match:
|
|
|
79 |
|
80 |
username = username_match.group(1).strip()
|
81 |
|
82 |
+
# Улучшенное извлечение текста комментария
|
83 |
+
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
|
84 |
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
|
85 |
if comment_match:
|
86 |
comment = clean_text(comment_match.group(1))
|
87 |
+
comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
|
88 |
comment = re.sub(r'^@[\w\.]+ ', '', comment)
|
89 |
else:
|
90 |
comment = ""
|
|
|
93 |
week_match = re.search(r'(\d+) нед\.', comment_text)
|
94 |
weeks = int(week_match.group(1)) if week_match else 0
|
95 |
|
96 |
+
# Извлекаем лайки с улучшенным поиском
|
97 |
likes = 0
|
98 |
likes_patterns = [
|
99 |
r"(\d+) отметк[аи] \"Нравится\"",
|
100 |
r"Нравится: (\d+)",
|
101 |
+
r"\"Нравится\": (\d+)",
|
102 |
]
|
103 |
|
104 |
for pattern in likes_patterns:
|
|
|
114 |
|
115 |
def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
|
116 |
try:
|
117 |
+
# Улучшенное разделение комментариев
|
118 |
+
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
|
119 |
comments_blocks = [block for block in comments_blocks if block.strip()]
|
120 |
|
121 |
# Основные списки для данных
|
|
|
131 |
comment_lengths = []
|
132 |
words_per_comment = []
|
133 |
all_words = []
|
134 |
+
user_engagement = {}
|
135 |
+
reply_chains = []
|
136 |
+
current_chain = []
|
137 |
|
138 |
# Обработка каждого комментария
|
139 |
for block in comments_blocks:
|
140 |
username, comment, like_count, week_number = extract_comment_data(block)
|
141 |
+
if username and (comment is not None):
|
142 |
usernames.append(username)
|
143 |
comments.append(comment)
|
144 |
likes.append(str(like_count))
|
|
|
146 |
|
147 |
# Базовые метрики
|
148 |
total_emojis += count_emojis(comment)
|
149 |
+
comment_mentions = extract_mentions(comment)
|
150 |
+
mentions.extend(comment_mentions)
|
151 |
sentiment = analyze_sentiment(comment)
|
152 |
sentiments.append(sentiment)
|
153 |
comment_lengths.append(len(comment))
|
154 |
|
155 |
+
# Анализ цепочек ответов
|
156 |
+
if comment_mentions:
|
157 |
+
current_chain.append((username, comment_mentions[0]))
|
158 |
+
else:
|
159 |
+
if current_chain:
|
160 |
+
reply_chains.append(current_chain)
|
161 |
+
current_chain = []
|
162 |
+
|
163 |
# Расширенные метрики
|
164 |
words = get_comment_words(comment)
|
165 |
words_per_comment.append(len(words))
|
|
|
172 |
'total_likes': 0,
|
173 |
'emoji_usage': 0,
|
174 |
'avg_length': 0,
|
175 |
+
'sentiments': [],
|
176 |
+
'mentions_received': 0,
|
177 |
+
'mentions_made': len(comment_mentions),
|
178 |
+
'response_time': []
|
179 |
}
|
180 |
user_stats = user_engagement[username]
|
181 |
user_stats['comments'] += 1
|
|
|
184 |
user_stats['avg_length'] += len(comment)
|
185 |
user_stats['sentiments'].append(sentiment)
|
186 |
|
187 |
+
# Финализируем цепочки ответов
|
188 |
+
if current_chain:
|
189 |
+
reply_chains.append(current_chain)
|
190 |
+
|
|
|
191 |
# Обновляем статистику пользователей
|
192 |
for username in user_engagement:
|
193 |
stats = user_engagement[username]
|
194 |
stats['avg_length'] /= stats['comments']
|
195 |
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
|
196 |
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
|
197 |
+
stats['mentions_received'] = sum(1 for m in mentions if m == f'@{username}')
|
198 |
|
199 |
+
# Экспериментальная аналитика
|
200 |
+
experimental_metrics = {
|
201 |
+
'conversation_depth': len(max(reply_chains, key=len)) if reply_chains else 0,
|
202 |
+
'avg_response_time': np.mean([c['avg_length'] for c in user_engagement.values()]),
|
203 |
+
'engagement_consistency': np.std([c['comments'] for c in user_engagement.values()]),
|
204 |
+
'user_interaction_score': len([c for c in comments if any(mention in c for mention in mentions)]) / len(comments),
|
205 |
+
'sentiment_volatility': np.std([1 if s == 'positive' else -1 if s == 'negative' else 0 for s in sentiments]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
}
|
207 |
|
208 |
+
# Форматируем данные для CSV
|
209 |
+
csv_data = {
|
210 |
+
'post_url': link_to_post,
|
211 |
+
'total_comments': len(comments),
|
212 |
+
'total_likes': sum(map(int, likes)),
|
213 |
+
'avg_likes_per_comment': sum(map(int, likes)) / len(comments),
|
214 |
+
'unique_users': len(set(usernames)),
|
215 |
+
'emoji_rate': total_emojis / len(comments),
|
216 |
+
'avg_comment_length': sum(comment_lengths) / len(comments),
|
217 |
+
'positive_sentiment_ratio': sum(1 for s in sentiments if s == 'positive') / len(sentiments),
|
218 |
+
'mention_rate': len(mentions) / len(comments),
|
219 |
+
'conversation_depth': experimental_metrics['conversation_depth'],
|
220 |
+
'user_interaction_score': experimental_metrics['user_interaction_score'],
|
221 |
+
'sentiment_volatility': experimental_metrics['sentiment_volatility'],
|
222 |
+
}
|
223 |
|
224 |
+
# Форматируем вывод для CSV
|
225 |
+
csv_output = ",".join([f"{k}:{v}" for k, v in csv_data.items()])
|
|
|
|
|
|
|
226 |
|
227 |
+
# Форматируем детальную аналитику
|
228 |
analytics_summary = (
|
229 |
+
f"CSV_DATA\n{csv_output}\n\n"
|
230 |
+
f"DETAILED_ANALYTICS\n"
|
231 |
f"Content Type: {content_type}\n"
|
232 |
f"Link to Post: {link_to_post}\n\n"
|
233 |
+
f"BASIC_STATS\n"
|
234 |
+
f"Total Comments: {len(comments)}\n"
|
235 |
+
f"Total Likes: {sum(map(int, likes))}\n"
|
236 |
+
f"Unique Users: {len(set(usernames))}\n"
|
237 |
+
f"Activity Period: {max(weeks)}-{min(weeks)} weeks\n\n"
|
238 |
+
f"CONTENT_ANALYSIS\n"
|
239 |
+
f"Avg Comment Length: {sum(comment_lengths) / len(comments):.1f}\n"
|
240 |
+
f"Total Emojis: {total_emojis}\n"
|
241 |
+
f"Sentiment Distribution: {Counter(sentiments)}\n\n"
|
242 |
+
f"EXPERIMENTAL_METRICS\n"
|
243 |
+
f"Conversation Depth: {experimental_metrics['conversation_depth']}\n"
|
244 |
+
f"User Interaction Score: {experimental_metrics['user_interaction_score']:.2f}\n"
|
245 |
+
f"Sentiment Volatility: {experimental_metrics['sentiment_volatility']:.2f}\n"
|
246 |
+
f"Engagement Consistency: {experimental_metrics['engagement_consistency']:.2f}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
)
|
248 |
|
249 |
+
return analytics_summary, usernames_output, comments_output, likes_chronology_output, str(sum(map(int, likes)))
|
250 |
|
251 |
except Exception as e:
|
252 |
logger.error(f"Error in analyze_post: {e}", exc_info=True)
|
253 |
+
return str(e), "", "", "", "0"
|
|
|
254 |
|
255 |
# Создаем интерфейс Gradio
|
256 |
iface = gr.Interface(
|
257 |
fn=analyze_post,
|
258 |
inputs=[
|
259 |
+
gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
|
260 |
+
gr.Textbox(label="Link to Post"),
|
261 |
+
gr.Number(label="Likes", value=0),
|
262 |
+
gr.Textbox(label="Post Date"),
|
263 |
+
gr.Textbox(label="Description", lines=3),
|
264 |
+
gr.Number(label="Total Comment Count", value=0),
|
265 |
+
gr.Textbox(label="All Comments", lines=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
],
|
267 |
outputs=[
|
268 |
gr.Textbox(label="Analytics Summary", lines=20),
|
269 |
+
gr.Textbox(label="Usernames"),
|
270 |
+
gr.Textbox(label="Comments"),
|
271 |
+
gr.Textbox(label="Likes Chronology"),
|
272 |
+
gr.Textbox(label="Total Likes on Comments")
|
273 |
],
|
274 |
+
title="Enhanced Instagram Comment Analyzer",
|
275 |
+
description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
|
276 |
)
|
277 |
|
278 |
if __name__ == "__main__":
|