boompack commited on
Commit
ed0485e
·
verified ·
1 Parent(s): f508547

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -506
app.py CHANGED
@@ -1,532 +1,113 @@
 
1
  import re
2
- import emoji
3
- import statistics
4
- from collections import Counter
5
- from typing import Dict, List, Tuple, Optional, Set, Union
6
  import logging
7
- from pathlib import Path
8
- from datetime import datetime
9
- import csv
10
- from dataclasses import dataclass, asdict
11
- from enum import Enum
12
- import numpy as np
13
 
14
- # Configure logging
15
- log_dir = Path("logs")
16
- log_dir.mkdir(exist_ok=True)
17
- logging.basicConfig(
18
- level=logging.INFO,
19
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
20
- handlers=[
21
- logging.FileHandler(log_dir / f'analyzer_{datetime.now():%Y%m%d}.log'),
22
- logging.StreamHandler()
23
- ]
24
- )
25
  logger = logging.getLogger(__name__)
26
 
27
- class Sentiment(str, Enum):
28
- POSITIVE = 'positive'
29
- SLIGHTLY_POSITIVE = 'slightly_positive'
30
- NEUTRAL = 'neutral'
31
- SLIGHTLY_NEGATIVE = 'slightly_negative'
32
- NEGATIVE = 'negative'
33
-
34
- @dataclass
35
- class CommentData:
36
- username: str
37
- text: str
38
- likes: int
39
- weeks_ago: float
40
- sentiment: Sentiment
41
-
42
- class TextAnalyzer:
43
- """Enhanced text analysis utilities"""
44
-
45
- @staticmethod
46
- def clean_text(text: str) -> str:
47
- """Clean text using more efficient string splitting"""
48
- return ' '.join(text.split())
49
-
50
- @staticmethod
51
- def count_emojis(text: str) -> int:
52
- """Count emojis using set operations for better performance"""
53
- return len({c for c in text if c in emoji.EMOJI_DATA})
54
-
55
- @staticmethod
56
- def extract_mentions(text: str) -> Set[str]:
57
- """Extract mentions returning a set for uniqueness"""
58
- return set(re.findall(r'@[\w.]+', text))
59
-
60
- @staticmethod
61
- def get_words(text: str) -> List[str]:
62
- """Extract meaningful words using improved regex"""
63
- return [w for w in re.findall(r'\b\w{3,}\b', text.lower())]
64
-
65
- class SentimentAnalyzer:
66
- """Enhanced sentiment analysis with gradual classification"""
67
-
68
- # Using sets for O(1) lookup
69
- INDICATORS = {
70
- 'positive': {
71
- '🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
72
- 'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
73
- 'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший',
74
- 'amazing', 'wonderful', 'great', 'perfect', 'love', 'beautiful'
75
- },
76
- 'negative': {
77
- '👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
78
- 'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
79
- 'разочарован', 'печаль', 'грустно', 'bad', 'worst',
80
- 'terrible', 'awful', 'sad', 'disappointed'
81
- }
82
- }
83
-
84
- @classmethod
85
- def analyze(cls, text: str) -> Sentiment:
86
- """
87
- Analyze text sentiment with enhanced granularity and emphasis handling
88
- """
89
- text_lower = text.lower()
90
- words = set(cls.TextAnalyzer.get_words(text_lower))
91
-
92
- pos_count = len(words & cls.INDICATORS['positive'])
93
- neg_count = len(words & cls.INDICATORS['negative'])
94
-
95
- # Calculate emphasis multiplier based on punctuation
96
- emphasis = min(text.count('!') * 0.2 + text.count('?') * 0.1, 1.0)
97
-
98
- # Apply emphasis to the dominant sentiment
99
- if pos_count > neg_count:
100
- pos_count *= (1 + emphasis)
101
- elif neg_count > pos_count:
102
- neg_count *= (1 + emphasis)
103
-
104
- # Determine sentiment with granularity
105
- total = pos_count + neg_count
106
- if total == 0:
107
- return Sentiment.NEUTRAL
108
-
109
- ratio = pos_count / total
110
- if ratio > 0.8:
111
- return Sentiment.POSITIVE
112
- elif ratio > 0.6:
113
- return Sentiment.SLIGHTLY_POSITIVE
114
- elif ratio < 0.2:
115
- return Sentiment.NEGATIVE
116
- elif ratio < 0.4:
117
- return Sentiment.SLIGHTLY_NEGATIVE
118
- return Sentiment.NEUTRAL
119
 
120
- class CommentExtractor:
121
- """Enhanced comment data extraction"""
122
-
123
- class ParseError(Exception):
124
- """Custom exception for parsing errors"""
125
- pass
126
-
127
- # Optimized patterns with named groups
128
- PATTERNS = {
129
- 'username': re.compile(r"""
130
- (?:
131
- Фото\sпрофиля\s(?P<name1>[^\n]+)|
132
- ^(?P<name2>[^\s]+)\s+|
133
- @(?P<name3>[^\s]+)\s+
134
- )
135
- """, re.VERBOSE),
136
-
137
- 'time': re.compile(r"""
138
- (?P<value>\d+)\s*
139
- (?P<unit>(?:ч|нед|h|w|час|hour|week))\.?
140
- """, re.VERBOSE),
141
-
142
- 'likes': re.compile(r"""
143
- (?:
144
- (?P<count1>\d+)\s*отметк[аи]\s\"Нравится\"|
145
- Нравится:\s*(?P<count2>\d+)|
146
- \"Нравится\":\s*(?P<count3>\d+)|
147
- likes?:\s*(?P<count4>\d+)
148
- )
149
- """, re.VERBOSE),
150
-
151
- 'metadata': re.compile(r"""
152
- Фото\sпрофиля[^\n]+\n|
153
- \d+\s*(?:ч|нед|h|w|час|hour|week)\.?|
154
- (?:Нравится|likes?):\s*\d+|
155
- \d+\s*отметк[аи]\s\"Нравится\"|
156
- Ответить|
157
- Показать\sперевод|
158
- Скрыть\sвсе\sответы|
159
- Смотреть\sвсе\sответы\s\(\d+\)
160
- """, re.VERBOSE)
161
- }
162
-
163
- @classmethod
164
- def extract_data(cls, comment_text: str) -> Optional[CommentData]:
165
- """Extract comment data with improved error handling"""
166
- try:
167
- # Extract username
168
- username_match = cls.PATTERNS['username'].search(comment_text)
169
- if not username_match:
170
- raise cls.ParseError("Could not extract username")
171
-
172
- username = next(
173
- name for name in username_match.groups()
174
- if name is not None
175
- ).strip()
176
-
177
- # Clean comment text
178
- comment = cls.PATTERNS['metadata'].sub('', comment_text)
179
- comment = TextAnalyzer.clean_text(comment)
180
-
181
- # Extract time
182
- time_match = cls.PATTERNS['time'].search(comment_text)
183
- if not time_match:
184
- weeks = 0
185
- else:
186
- value = int(time_match.group('value'))
187
- unit = time_match.group('unit')
188
- weeks = value if unit in {'нед', 'w', 'week'} else value / (24 * 7)
189
-
190
- # Extract likes
191
- likes_match = cls.PATTERNS['likes'].search(comment_text)
192
- likes = next(
193
- (int(count) for count in likes_match.groups() if count),
194
- 0
195
- ) if likes_match else 0
196
-
197
- # Analyze sentiment
198
- sentiment = SentimentAnalyzer.analyze(comment)
199
-
200
- return CommentData(
201
- username=username,
202
- text=comment,
203
- likes=likes,
204
- weeks_ago=weeks,
205
- sentiment=sentiment
206
- )
207
-
208
- except cls.ParseError as e:
209
- logger.warning(f"Failed to parse comment: {e}")
210
- return None
211
- except Exception as e:
212
- logger.error(f"Unexpected error parsing comment: {e}", exc_info=True)
213
- return None
214
 
215
- class StatsCalculator:
216
- """Enhanced statistics calculation"""
217
-
218
- @staticmethod
219
- def calculate_period_stats(comments: List[CommentData]) -> Dict:
220
- """Calculate statistics using quantile-based periods"""
221
- if not comments:
222
- return {}
223
-
224
- # Sort by weeks
225
- sorted_comments = sorted(comments, key=lambda x: x.weeks_ago)
226
-
227
- # Calculate period boundaries using quantiles
228
- weeks = [c.weeks_ago for c in sorted_comments]
229
- boundaries = np.quantile(weeks, [0.33, 0.67])
230
-
231
- # Group comments by period
232
- periods = {
233
- 'early': [],
234
- 'middle': [],
235
- 'late': []
236
- }
237
-
238
- for comment in sorted_comments:
239
- if comment.weeks_ago <= boundaries[0]:
240
- periods['early'].append(comment)
241
- elif comment.weeks_ago <= boundaries[1]:
242
- periods['middle'].append(comment)
243
- else:
244
- periods['late'].append(comment)
245
-
246
- # Calculate statistics for each period
247
- return {
248
- period: {
249
- 'comments': len(comments),
250
- 'avg_likes': statistics.mean(c.likes for c in comments) if comments else 0,
251
- 'sentiment_ratio': sum(
252
- 1 for c in comments
253
- if c.sentiment in {Sentiment.POSITIVE, Sentiment.SLIGHTLY_POSITIVE}
254
- ) / len(comments) if comments else 0
255
- }
256
- for period, comments in periods.items()
257
- }
258
 
259
- def analyze_post(
260
- content_type: str,
261
- link_to_post: str,
262
- post_likes: int,
263
- post_date: str,
264
- description: str,
265
- comment_count: int,
266
- all_comments: str
267
- ) -> Tuple[str, str, str, str, str]:
268
- """Enhanced post analysis with improved error handling and reporting"""
269
  try:
270
- # Split comments using optimized pattern
271
- comment_pattern = re.compile(
272
- r'(?=Фото профиля|\n\s*[a-zA-Z0-9._]+\s+|\b@[a-zA-Z0-9._]+\s+)',
273
- re.MULTILINE
274
- )
275
- comments_blocks = [
276
- block.strip() for block in comment_pattern.split(all_comments)
277
- if block and block.strip() and 'Скрыто алгоритмами Instagram' not in block
278
- ]
279
 
280
- # Extract and validate comment data
281
  comments_data = []
282
- for block in comments_blocks:
283
- if data := CommentExtractor.extract_data(block):
284
- comments_data.append(data)
285
-
286
- if not comments_data:
287
- logger.warning("No valid comments found in the input")
288
- return "No valid comments found", "", "", "", "0"
289
-
290
- # Calculate statistics
291
- basic_stats = {
292
- 'total_comments': len(comments_data),
293
- 'avg_length': statistics.mean(len(c.text) for c in comments_data),
294
- 'median_length': statistics.median(len(c.text) for c in comments_data),
295
- 'avg_words': statistics.mean(len(TextAnalyzer.get_words(c.text)) for c in comments_data),
296
- 'total_likes': sum(c.likes for c in comments_data),
297
- 'avg_likes': statistics.mean(c.likes for c in comments_data)
298
- }
299
-
300
- # Generate reports
301
- reports = generate_reports(
302
- content_type=content_type,
303
- link_to_post=link_to_post,
304
- post_likes=post_likes,
305
- comments_data=comments_data,
306
- basic_stats=basic_stats
307
- )
308
-
309
- return (
310
- reports['analytics'],
311
- "\n".join(c.username for c in comments_data),
312
- "\n".join(c.text for c in comments_data),
313
- "\n".join(str(c.likes) for c in comments_data),
314
- str(basic_stats['total_likes'])
315
- )
316
 
317
- except Exception as e:
318
- logger.error(f"Error analyzing post: {e}", exc_info=True)
319
- return f"Error analyzing post: {str(e)}", "", "", "", "0"
 
 
 
 
 
 
 
320
 
321
- def generate_reports(
322
- content_type: str,
323
- link_to_post: str,
324
- post_likes: int,
325
- comments_data: List[CommentData],
326
- basic_stats: Dict
327
- ) -> Dict[str, str]:
328
- """Generate comprehensive reports in multiple formats"""
329
-
330
- # Calculate additional statistics
331
- sentiment_dist = Counter(c.sentiment for c in comments_data)
332
- period_stats = StatsCalculator.calculate_period_stats(comments_data)
333
- top_users = Counter(c.username for c in comments_data).most_common(5)
334
- top_mentioned = Counter(
335
- mention for c in comments_data
336
- for mention in TextAnalyzer.extract_mentions(c.text)
337
- ).most_common(5)
338
-
339
- # Generate CSV report
340
- csv_output = StringIO()
341
- writer = csv.writer(csv_output)
342
-
343
- # Write metadata
344
- writer.writerow(['Content Analysis Report'])
345
- writer.writerow(['Generated', datetime.now().isoformat()])
346
- writer.writerow(['Content Type', content_type])
347
- writer.writerow(['Post URL', link_to_post])
348
- writer.writerow(['Post Likes', post_likes])
349
- writer.writerow([])
350
-
351
- # Write statistics sections
352
- for section, data in {
353
- 'Basic Statistics': basic_stats,
354
- 'Sentiment Distribution': sentiment_dist,
355
- 'Period Analysis': period_stats,
356
- 'Top Users': dict(top_users),
357
- 'Top Mentioned': dict(top_mentioned)
358
- }.items():
359
- writer.writerow([section])
360
- for key, value in data.items():
361
- writer.writerow([key, value])
362
- writer.writerow([])
363
-
364
- # Generate text report
365
- text_report = (
366
- f"ANALYSIS REPORT\n"
367
- f"Generated: {datetime.now():%Y-%m-%d %H:%M:%S}\n\n"
368
- f"BASIC STATISTICS:\n"
369
- f"- Total Comments: {basic_stats['total_comments']}\n"
370
- f"- Average Likes: {basic_stats['avg_likes']:.1f}\n"
371
- f"- Average Length: {basic_stats['avg_length']:.1f} characters\n"
372
- f"- Median Length: {basic_stats['median_length']}\n"
373
- f"- Average Words: {basic_stats['avg_words']:.1f}\n\n"
374
- f"SENTIMENT ANALYSIS:\n"
375
- f"- Positive: {sentiment_dist[Sentiment.POSITIVE]}\n"
376
- f"- Slightly Positive: {sentiment_dist[Sentiment.SLIGHTLY_POSITIVE]}\n"
377
- f"- Neutral: {sentiment_dist[Sentiment.NEUTRAL]}\n"
378
- f"- Slightly Negative: {sentiment_dist[Sentiment.SLIGHTLY_NEGATIVE]}\n"
379
- f"- Negative: {sentiment_dist[Sentiment.NEGATIVE]}\n\n"
380
- f"TOP CONTRIBUTORS:\n" +
381
- "\n".join(f"- {user}: {count} comments" for user, count in top_users) +
382
- f"\n\nMOST MENTIONED:\n""\n".join(f"- {user}: {count} mentions" for user, count in top_mentioned) +
383
- f"\n\nENGAGEMENT PERIODS:\n"
384
- f"Early Period:\n"
385
- f"- Comments: {period_stats['early']['comments']}\n"
386
- f"- Avg Likes: {period_stats['early']['avg_likes']:.1f}\n"
387
- f"- Positive Sentiment: {period_stats['early']['sentiment_ratio']*100:.1f}%\n\n"
388
- f"Middle Period:\n"
389
- f"- Comments: {period_stats['middle']['comments']}\n"
390
- f"- Avg Likes: {period_stats['middle']['avg_likes']:.1f}\n"
391
- f"- Positive Sentiment: {period_stats['middle']['sentiment_ratio']*100:.1f}%\n\n"
392
- f"Late Period:\n"
393
- f"- Comments: {period_stats['late']['comments']}\n"
394
- f"- Avg Likes: {period_stats['late']['avg_likes']:.1f}\n"
395
- f"- Positive Sentiment: {period_stats['late']['sentiment_ratio']*100:.1f}%\n"
396
- )
397
-
398
- return {
399
- 'csv': csv_output.getvalue(),
400
- 'analytics': text_report
401
- }
402
 
403
- # Gradio interface with improved input validation and error handling
404
- import gradio as gr
 
 
 
 
405
 
406
- def validate_input(content_type: str, link: str, likes: int, date: str,
407
- description: str, comment_count: int, comments: str) -> Tuple[bool, str]:
408
- """Validate input parameters before processing"""
409
- if not link:
410
- return False, "Post link is required"
411
- if likes < 0:
412
- return False, "Likes count cannot be negative"
413
- if comment_count < 0:
414
- return False, "Comment count cannot be negative"
415
- if not comments.strip():
416
- return False, "Comments text is required"
417
- return True, ""
418
 
419
- def wrapped_analyze_post(*args):
420
- """Wrapper for analyze_post with input validation"""
421
- is_valid, error_message = validate_input(*args)
422
- if not is_valid:
423
- return error_message, "", "", "", "0"
424
-
425
- try:
426
- return analyze_post(*args)
427
  except Exception as e:
428
- logger.error(f"Error in analyze_post wrapper: {e}", exc_info=True)
429
- return f"An error occurred: {str(e)}", "", "", "", "0"
430
 
431
- # Create enhanced Gradio interface
432
  iface = gr.Interface(
433
- fn=wrapped_analyze_post,
434
  inputs=[
435
- gr.Radio(
436
- choices=["Photo", "Video", "Reel", "Story"],
437
- label="Content Type",
438
- value="Photo"
439
- ),
440
- gr.Textbox(
441
- label="Link to Post",
442
- placeholder="https://instagram.com/p/..."
443
- ),
444
- gr.Number(
445
- label="Post Likes",
446
- value=0,
447
- minimum=0
448
- ),
449
- gr.Textbox(
450
- label="Post Date",
451
- placeholder="YYYY-MM-DD"
452
- ),
453
- gr.Textbox(
454
- label="Post Description",
455
- lines=3,
456
- placeholder="Enter post description..."
457
- ),
458
- gr.Number(
459
- label="Total Comment Count",
460
- value=0,
461
- minimum=0
462
- ),
463
- gr.Textbox(
464
- label="Comments",
465
- lines=10,
466
- placeholder="Paste comments here..."
467
- )
468
  ],
469
  outputs=[
470
- gr.Textbox(
471
- label="Analytics Summary",
472
- lines=20
473
- ),
474
- gr.Textbox(
475
- label="Extracted Usernames"
476
- ),
477
- gr.Textbox(
478
- label="Cleaned Comments"
479
- ),
480
- gr.Textbox(
481
- label="Comment Likes Timeline"
482
- ),
483
- gr.Textbox(
484
- label="Total Comment Likes"
485
- )
486
  ],
487
- title="Enhanced Instagram Comment Analyzer",
488
- description="""
489
- Analyze Instagram comments with advanced metrics including:
490
- - Sentiment analysis with granular classification
491
- - Temporal engagement patterns
492
- - User interaction statistics
493
- - Content quality metrics
494
- """,
495
- article="""
496
- ### Usage Instructions
497
- 1. Select the content type (Photo, Video, Reel, or Story)
498
- 2. Paste the post URL
499
- 3. Enter the post metadata (likes, date, description)
500
- 4. Paste the comments text
501
- 5. Click submit to generate analysis
502
-
503
- ### Analysis Features
504
- - Multi-level sentiment analysis
505
- - Engagement period breakdown
506
- - Top contributors and mentions
507
- - Detailed statistical metrics
508
-
509
- ### Notes
510
- - All text fields support Unicode characters including emojis
511
- - Time references are converted to a standardized format
512
- - Analysis includes both quantitative and qualitative metrics
513
- """
514
  )
515
 
516
  if __name__ == "__main__":
517
- # Configure logging for the main application
518
- logger.info("Starting Instagram Comment Analyzer")
519
-
520
- try:
521
- # Launch the interface with enhanced settings
522
- iface.launch(
523
- server_name="0.0.0.0", # Allow external access
524
- server_port=7860, # Default Gradio port
525
- share=False, # Disable public URL generation
526
- debug=False, # Disable debug mode in production
527
- enable_queue=True, # Enable request queuing
528
- max_threads=4 # Limit concurrent processing
529
- )
530
- except Exception as e:
531
- logger.error(f"Failed to start application: {e}", exc_info=True)
532
- raise
 
1
+ import gradio as gr
2
  import re
 
 
 
 
3
  import logging
4
+ from typing import Tuple, Optional
 
 
 
 
 
5
 
6
+ logging.basicConfig(level=logging.INFO)
 
 
 
 
 
 
 
 
 
 
7
  logger = logging.getLogger(__name__)
8
 
9
+ def extract_comment_data(comment_text: str) -> Tuple[Optional[str], Optional[str], int, int]:
10
+ """Извлекает данные из комментария"""
11
+ try:
12
+ # Пропускаем информацию о посте
13
+ if 'отметок "Нравится"' in comment_text:
14
+ return None, None, 0, 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # Извлекаем имя пользователя
17
+ username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
18
+ if not username_match:
19
+ return None, None, 0, 0
20
+
21
+ username = username_match.group(1).strip()
22
+
23
+ # Извлекаем текст комментария
24
+ lines = comment_text.split('\n')
25
+ comment = ""
26
+ for i, line in enumerate(lines):
27
+ if username in line and i + 1 < len(lines):
28
+ comment = lines[i + 1].strip()
29
+ # Очищаем комментарий
30
+ comment = re.sub(r'\d+\s*(?:ч\.|нед\.)\s*$', '', comment)
31
+ comment = re.sub(r'"Нравится":\s*\d+\s*Ответить\s*$', '', comment)
32
+ break
33
+
34
+ # Извлекаем лайки
35
+ likes_match = re.search(r'"Нравится":\s*(\d+)', comment_text)
36
+ likes = int(likes_match.group(1)) if likes_match else 0
37
+
38
+ # Извлекаем время
39
+ time_match = re.search(r'(\d+)\s*(?:ч\.|нед\.)', comment_text)
40
+ time = int(time_match.group(1)) if time_match else 0
41
+
42
+ return username, comment.strip(), likes, time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ except Exception as e:
45
+ logger.error(f"Error extracting data: {e}")
46
+ return None, None, 0, 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ def analyze_post(content_type: str, link: str, post_likes: int,
49
+ post_date: str, description: str, comment_count: int,
50
+ all_comments: str) -> Tuple[str, str, str, str, str]:
51
+ """Анализирует пост и комментарии"""
 
 
 
 
 
 
52
  try:
53
+ # Разделяем на блоки комментариев
54
+ blocks = re.split(r'(?=Фото профиля)', all_comments)
55
+ blocks = [b.strip() for b in blocks if b.strip()]
 
 
 
 
 
 
56
 
 
57
  comments_data = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ # Обрабатываем каждый блок
60
+ for block in blocks:
61
+ username, comment, likes, time = extract_comment_data(block)
62
+ if username and comment:
63
+ comments_data.append({
64
+ 'username': username,
65
+ 'comment': comment,
66
+ 'likes': likes,
67
+ 'time': time
68
+ })
69
 
70
+ # Формируем выходные данные
71
+ usernames = "\n".join(item['username'] for item in comments_data)
72
+ comments = "\n".join(item['comment'] for item in comments_data)
73
+ likes = "\n".join(str(item['likes']) for item in comments_data)
74
+ total_likes = sum(item['likes'] for item in comments_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ analytics = f"""
77
+ 📊 Анализ комментариев:
78
+ Всего комментариев: {len(comments_data)}
79
+ Уникальных пользователей: {len(set(item['username'] for item in comments_data))}
80
+ Общее количество лайков: {total_likes}
81
+ """
82
 
83
+ return analytics, usernames, comments, likes, str(total_likes)
 
 
 
 
 
 
 
 
 
 
 
84
 
 
 
 
 
 
 
 
 
85
  except Exception as e:
86
+ logger.error(f"Analysis error: {e}")
87
+ return str(e), "", "", "", "0"
88
 
89
+ # Интерфейс Gradio
90
  iface = gr.Interface(
91
+ fn=analyze_post,
92
  inputs=[
93
+ gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
94
+ gr.Textbox(label="Link to Post"),
95
+ gr.Number(label="Likes", value=0),
96
+ gr.Textbox(label="Post Date"),
97
+ gr.Textbox(label="Description", lines=3),
98
+ gr.Number(label="Comment Count", value=0),
99
+ gr.Textbox(label="Comments", lines=10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  ],
101
  outputs=[
102
+ gr.Textbox(label="Analytics Summary", lines=10),
103
+ gr.Textbox(label="Usernames"),
104
+ gr.Textbox(label="Comments"),
105
+ gr.Textbox(label="Likes Chronology"),
106
+ gr.Textbox(label="Total Likes on Comments")
 
 
 
 
 
 
 
 
 
 
 
107
  ],
108
+ title="Instagram Comment Analyzer",
109
+ description="Анализатор комментариев Instagram"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  )
111
 
112
  if __name__ == "__main__":
113
+ iface.launch()