File size: 14,345 Bytes
86fa8c7
 
 
 
 
 
 
 
 
 
 
acdf71a
86fa8c7
e55c584
 
86fa8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
acdf71a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86fa8c7
 
 
acdf71a
86fa8c7
acdf71a
86fa8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import pandas as pd
import pandas_datareader as pdr
import numpy as np
import yfinance as yf
import requests
from bs4 import BeautifulSoup
from typing import List
from tqdm import tqdm
import os
import datetime
import json
from pandas.tseries.offsets import BDay
from sqlalchemy import create_engine
# from dotenv import load_dotenv
# load_dotenv()

data_start_date = '2018-07-01'

def get_daily(mode='daily', periods_30m=None):
    '''

    Method to get daily data and create daily features. Optionally append intra data if specified.

    `mode`: 'daily' or 'intra'.

    `periods_30m`: How many 30m periods to bring in. Only specify if mode == 'intra'.

    '''
    
    vix = yf.Ticker('^VIX')
    vvix = yf.Ticker('^VVIX')
    spx = yf.Ticker('^GSPC')

    # Grab data from db
    engine = create_engine(
        f"mysql+mysqldb://{os.getenv('DATABASE_USERNAME')}:" \
        f"{os.getenv('DATABASE_PASSWORD')}@{os.getenv('DATABASE_HOST')}/" \
        f"{os.getenv('DATABASE')}?ssl_ca=ca-certificates.crt&ssl_mode=VERIFY_IDENTITY"
    )

    query = f'''SELECT

        spx.Datetime AS Datetime,

        spx.Open AS Open,

        spx.High AS High,

        spx.Low AS Low,

        spx.Close AS Close,

        vix.Open AS Open_VIX,

        vix.High AS High_VIX,

        vix.Low AS Low_VIX,

        vix.Close AS Close_VIX,

        vvix.Open AS Open_VVIX,

        vvix.High AS High_VVIX,

        vvix.Low AS Low_VVIX,

        vvix.Close AS Close_VVIX

    FROM 

        SPX_full_1day AS spx

    LEFT JOIN 

        VIX_full_1day AS vix ON spx.Datetime = vix.Datetime AND vix.Datetime > '{data_start_date}'

    LEFT JOIN 

        VVIX_full_1day AS vvix ON spx.Datetime = vvix.Datetime AND vvix.Datetime > '{data_start_date}'

    WHERE 

        spx.Datetime > '{data_start_date}'



    '''
    data = pd.read_sql_query(sql=query, con=engine.connect())
    data['Datetime'] = pd.to_datetime(data['Datetime'])
    data = data.set_index('Datetime',drop=True)

    # Get incremental date
    last_date = data.index.date[-1]
    last_date = last_date + BDay(1) 

    prices_vix = vix.history(start=last_date, interval='1d')
    prices_vvix = vvix.history(start=last_date, interval='1d')
    prices_spx = spx.history(start=last_date, interval='1d')

    if len(prices_spx) > 0:

        prices_spx['index'] = [str(x).split()[0] for x in prices_spx.index]
        prices_spx['index'] = pd.to_datetime(prices_spx['index']).dt.date
        prices_spx.index = prices_spx['index']
        prices_spx = prices_spx.drop(columns='index')
        prices_spx.index = pd.DatetimeIndex(prices_spx.index)

        prices_vix['index'] = [str(x).split()[0] for x in prices_vix.index]
        prices_vix['index'] = pd.to_datetime(prices_vix['index']).dt.date
        prices_vix.index = prices_vix['index']
        prices_vix = prices_vix.drop(columns='index')
        prices_vix.index = pd.DatetimeIndex(prices_vix.index)

        prices_vvix['index'] = [str(x).split()[0] for x in prices_vvix.index]
        prices_vvix['index'] = pd.to_datetime(prices_vvix['index']).dt.date
        prices_vvix.index = prices_vvix['index']
        prices_vvix = prices_vvix.drop(columns='index')
        prices_vvix.index = pd.DatetimeIndex(prices_vvix.index)

        data1 = prices_spx.merge(prices_vix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VIX'])
        data1 = data1.merge(prices_vvix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VVIX'])
        data = pd.concat([data, data1])

    else:
        data = data.copy()

    if mode == 'intra':
        from getIntraData import get_intra
        df_intra = get_intra(periods_30m)
        data = data.merge(df_intra, left_index=True, right_index=True)
    else:
        data = data.copy()

    # Features
    data['PrevClose'] = data['Close'].shift(1)
    data['Perf5Day'] = data['Close'] > data['Close'].shift(5)
    data['Perf5Day_n1'] = data['Perf5Day'].shift(1)
    data['Perf5Day_n1'] = data['Perf5Day_n1'].astype(bool)
    data['GreenDay'] = (data['Close'] > data['PrevClose']) * 1
    data['RedDay'] = (data['Close'] <= data['PrevClose']) * 1

    data['VIX5Day'] = data['Close_VIX'] > data['Close_VIX'].shift(5)
    data['VIX5Day_n1'] = data['VIX5Day'].astype(bool)

    data['VVIX5Day'] = data['Close_VVIX'] > data['Close_VVIX'].shift(5)
    data['VVIX5Day_n1'] = data['VVIX5Day'].astype(bool)

    data['VIXOpen'] = data['Open_VIX'] > data['Close_VIX'].shift(1)
    data['VVIXOpen'] = data['Open_VVIX'] > data['Close_VVIX'].shift(1)
    data['VIXOpen'] = data['VIXOpen'].astype(bool)
    data['VVIXOpen'] = data['VVIXOpen'].astype(bool)

    data['Range'] = data[['Open','High']].max(axis=1) - data[['Low','Open']].min(axis=1) # Current day range in points
    data['RangePct'] = data['Range'] / data['Close']
    data['VIXLevel'] = pd.qcut(data['Close_VIX'], 4)
    data['OHLC4_VIX'] = data[['Open_VIX','High_VIX','Low_VIX','Close_VIX']].mean(axis=1)
    data['OHLC4'] = data[['Open','High','Low','Close']].mean(axis=1)
    data['OHLC4_Trend'] = data['OHLC4'] > data['OHLC4'].shift(1)
    data['OHLC4_Trend'] = data['OHLC4_Trend'].astype(bool)
    data['OHLC4_Trend_n1'] = data['OHLC4_Trend'].shift(1)
    data['OHLC4_Trend_n1'] = data['OHLC4_Trend_n1'].astype(float)
    data['OHLC4_Trend_n2'] = data['OHLC4_Trend'].shift(1)
    data['OHLC4_Trend_n2'] = data['OHLC4_Trend_n2'].astype(float)
    data['RangePct_n1'] = data['RangePct'].shift(1)
    data['RangePct_n2'] = data['RangePct'].shift(2)
    data['OHLC4_VIX_n1'] = data['OHLC4_VIX'].shift(1)
    data['OHLC4_VIX_n2'] = data['OHLC4_VIX'].shift(2)
    data['CurrentGap'] = (data['Open'] - data['PrevClose']) / data['PrevClose']
    data['CurrentGapHist'] = data['CurrentGap'].copy()
    data['CurrentGap'] = data['CurrentGap'].shift(-1)
    data['DayOfWeek'] = pd.to_datetime(data.index)
    data['DayOfWeek'] = data['DayOfWeek'].dt.day

    # Target -- the next day's low
    data['Target'] = (data['OHLC4'] / data['PrevClose']) - 1
    data['Target'] = data['Target'].shift(-1)
    # data['Target'] = data['RangePct'].shift(-1)

    # Target for clf -- whether tomorrow will close above or below today's close
    data['Target_clf'] = data['Close'] > data['PrevClose']
    data['Target_clf'] = data['Target_clf'].shift(-1)
    data['DayOfWeek'] = pd.to_datetime(data.index)
    data['Quarter'] = data['DayOfWeek'].dt.quarter
    data['DayOfWeek'] = data['DayOfWeek'].dt.weekday

    # Calculate up
    data['up'] = 100 * (data['High'].shift(1) - data['Open'].shift(1)) / data['Close'].shift(1)

    # Calculate upSD
    data['upSD'] = data['up'].rolling(30).std(ddof=0)

    # Calculate aveUp
    data['aveUp'] = data['up'].rolling(30).mean()
    data['H1'] = data['Open'] + (data['aveUp'] / 100) * data['Open']
    data['H2'] = data['Open'] + ((data['aveUp'] + data['upSD']) / 100) * data['Open']
    data['down'] = 100 * (data['Open'].shift(1) - data['Low'].shift(1)) / data['Close'].shift(1)
    data['downSD'] = data['down'].rolling(30).std(ddof=0)
    data['aveDown'] = data['down'].rolling(30).mean()
    data['L1'] = data['Open'] - (data['aveDown'] / 100) * data['Open']
    data['L2'] = data['Open'] - ((data['aveDown'] + data['downSD']) / 100) * data['Open']

    data = data.assign(
        L1Touch = lambda x: x['Low'] < x['L1'],
        L2Touch = lambda x: x['Low'] < x['L2'],
        H1Touch = lambda x: x['High'] > x['H1'],
        H2Touch = lambda x: x['High'] > x['H2'],
        L1Break = lambda x: x['Close'] < x['L1'],
        L1TouchRed = lambda x: (x['Low'] < x['L2']) & (x['Close'] < x['PrevClose']),
        L2TouchL1Break = lambda x: (x['Low'] < x['L2']) & (x['Close'] < x['L1']),
        L2Break = lambda x: x['Close'] < x['L2'],
        H1Break = lambda x: x['Close'] > x['H1'],
        H1TouchGreen = lambda x: (x['High'] > x['H1']) & (x['Close'] > x['PrevClose']),
        H2TouchH1Break = lambda x: (x['High'] > x['H2']) & (x['Close'] > x['H1']),
        H2Break = lambda x: x['Close'] > x['H2'],
        OpenL1 = lambda x: np.where(x['Open'] < x['L1'], 1, 0),
        OpenL2 = lambda x: np.where(x['Open'] < x['L2'], 1, 0),
        OpenH1 = lambda x: np.where(x['Open'] > x['H1'], 1, 0),
        OpenH2 = lambda x: np.where(x['Open'] > x['H2'], 1, 0)
    )

    data['OpenL1'] = data['OpenL1'].shift(-1)
    data['OpenL2'] = data['OpenL2'].shift(-1)
    data['OpenH1'] = data['OpenH1'].shift(-1)
    data['OpenH2'] = data['OpenH2'].shift(-1)


    level_cols = [
        'L1Touch',
        'L2Touch',
        'H1Touch',
        'H2Touch',
        'L1Break',
        'L2Break',
        'H1Break',
        'H2Break'
    ]

    for col in level_cols:
        data[col+'Pct'] = data[col].rolling(100).mean()
        # data[col+'Pct'] = data[col+'Pct'].shift(-1)

    data['H1BreakTouchPct'] = data['H1Break'].rolling(100).sum() / data['H1Touch'].rolling(100).sum()
    data['H2BreakTouchPct'] = data['H2Break'].rolling(100).sum() / data['H2Touch'].rolling(100).sum()
    data['L1BreakTouchPct'] = data['L1Break'].rolling(100).sum() / data['L1Touch'].rolling(100).sum()
    data['L2BreakTouchPct'] = data['L2Break'].rolling(100).sum() / data['L2Touch'].rolling(100).sum()
    data['L1TouchRedPct'] = data['L1TouchRed'].rolling(100).sum() / data['L1Touch'].rolling(100).sum()
    data['H1TouchGreenPct'] = data['H1TouchGreen'].rolling(100).sum() / data['H1Touch'].rolling(100).sum()

    data['H1BreakH2TouchPct'] = data['H2TouchH1Break'].rolling(100).sum() / data['H2Touch'].rolling(100).sum()
    data['L1BreakL2TouchPct'] = data['L2TouchL1Break'].rolling(100).sum() / data['L2Touch'].rolling(100).sum()

    if mode=='intra':
        # Intraday features
        data['CurrentOpen30'] = data['Open30'].shift(-1)
        data['CurrentHigh30'] = data['High30'].shift(-1)
        data['CurrentLow30'] = data['Low30'].shift(-1)
        data['CurrentClose30'] = data['Close30'].shift(-1)
        data['CurrentOHLC430'] = data[['CurrentOpen30','CurrentHigh30','CurrentLow30','CurrentClose30']].max(axis=1)
        data['OHLC4_Current_Trend'] = data['CurrentOHLC430'] > data['OHLC4']
        data['OHLC4_Current_Trend'] = data['OHLC4_Current_Trend'].astype(bool)
        data['HistClose30toPrevClose'] = (data['Close30'] / data['PrevClose']) - 1

        data['CurrentCloseVIX30'] = data['Close_VIX30'].shift(-1)
        data['CurrentOpenVIX30'] = data['Open_VIX30'].shift(-1)

        data['CurrentVIXTrend'] = data['CurrentCloseVIX30'] > data['Close_VIX']

        # Open to High
        data['CurrentHigh30toClose'] = (data['CurrentHigh30'] / data['Close']) - 1
        data['CurrentLow30toClose'] = (data['CurrentLow30'] / data['Close']) - 1
        data['CurrentClose30toClose'] = (data['CurrentClose30'] / data['Close']) - 1
        data['CurrentRange30'] = (data['CurrentHigh30'] - data['CurrentLow30']) / data['Close']
        data['GapFill30'] = [low <= prev_close if gap > 0 else high >= prev_close for high, low, prev_close, gap in zip(data['CurrentHigh30'], data['CurrentLow30'], data['Close'], data['CurrentGap'])]
        data['CloseL1'] = np.where(data['Close30'] < data['L1'], 1, 0)
        data['CloseL2'] = np.where(data['Close30'] < data['L2'], 1, 0)
        data['CloseH1'] = np.where(data['Close30'] > data['H1'], 1, 0)
        data['CloseH2'] = np.where(data['Close30'] > data['H2'], 1, 0)
        data['CloseL1'] = data['CloseL1'].shift(-1)
        data['CloseL2'] = data['CloseL2'].shift(-1)
        data['CloseH1'] = data['CloseH1'].shift(-1)
        data['CloseH2'] = data['CloseH2'].shift(-1)

        def get_quintiles(df, col_name, q):
            return df.groupby(pd.qcut(df[col_name], q))['GreenDay'].mean()

        probas = []
        # Given the current price level
        for i, pct in enumerate(data['CurrentClose30toClose']):
            try:
                # Split
                df_q = get_quintiles(data.iloc[:i], 'HistClose30toPrevClose', 10)
                for q in df_q.index:
                    if q.left <= pct <= q.right:
                        p = df_q[q]
            except:
                p = None

            probas.append(p)

        data['GreenProbas'] = probas

    engine = create_engine(
        f"mysql+mysqldb://{os.getenv('DATABASE_USERNAME')}:" \
        f"{os.getenv('DATABASE_PASSWORD')}@{os.getenv('DATABASE_HOST')}/" \
        f"{os.getenv('DATABASE')}?ssl_ca=ca-certificates.crt&ssl_mode=VERIFY_IDENTITY"
    )

    df_releases = pd.read_sql_query('select * from releases', con=engine)
    df_releases = df_releases.set_index('Datetime')
    data = data.merge(df_releases, how = 'left', left_index=True, right_index=True)

    for n in tqdm(df_releases.columns, desc='Merging econ data'):
        # Get the name of the release
        # n = releases[rid]['name']
        # Merge the corresponding DF of the release
        # data = data.merge(releases[rid]['df'], how = 'left', left_index=True, right_index=True)
        # Create a column that shifts the value in the merged column up by 1
        data[f'{n}_shift'] = data[n].shift(-1)
        # Fill the rest with zeroes
        data[n] = data[n].fillna(0)
        data[f'{n}_shift'] = data[f'{n}_shift'].fillna(0)
        
    data['BigNewsDay'] = data[[x for x in data.columns if '_shift' in x]].max(axis=1)

    def cumul_sum(col):
        nums = []
        s = 0
        for x in col:
            if x == 1:
                s += 1
            elif x == 0:
                s = 0
            nums.append(s)
        return nums

    consec_green = cumul_sum(data['GreenDay'].values)
    consec_red = cumul_sum(data['RedDay'].values)

    data['DaysGreen'] = consec_green
    data['DaysRed'] = consec_red

    final_row = data.index[-2]

    if mode=='daily':
        from dailyCols import model_cols

    elif mode=='intra':
        from intraCols import model_cols

    df_final = data.loc[:final_row, model_cols + ['Target', 'Target_clf']]
    df_final = df_final.dropna(subset=['Target','Target_clf'])
    # df_final = df_final.dropna(subset=['Target','Target_clf','Perf5Day_n1'])
    return data, df_final, final_row