Spaces:
Sleeping
Sleeping
File size: 14,345 Bytes
86fa8c7 acdf71a 86fa8c7 e55c584 86fa8c7 acdf71a 86fa8c7 acdf71a 86fa8c7 acdf71a 86fa8c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import pandas as pd
import pandas_datareader as pdr
import numpy as np
import yfinance as yf
import requests
from bs4 import BeautifulSoup
from typing import List
from tqdm import tqdm
import os
import datetime
import json
from pandas.tseries.offsets import BDay
from sqlalchemy import create_engine
# from dotenv import load_dotenv
# load_dotenv()
data_start_date = '2018-07-01'
def get_daily(mode='daily', periods_30m=None):
'''
Method to get daily data and create daily features. Optionally append intra data if specified.
`mode`: 'daily' or 'intra'.
`periods_30m`: How many 30m periods to bring in. Only specify if mode == 'intra'.
'''
vix = yf.Ticker('^VIX')
vvix = yf.Ticker('^VVIX')
spx = yf.Ticker('^GSPC')
# Grab data from db
engine = create_engine(
f"mysql+mysqldb://{os.getenv('DATABASE_USERNAME')}:" \
f"{os.getenv('DATABASE_PASSWORD')}@{os.getenv('DATABASE_HOST')}/" \
f"{os.getenv('DATABASE')}?ssl_ca=ca-certificates.crt&ssl_mode=VERIFY_IDENTITY"
)
query = f'''SELECT
spx.Datetime AS Datetime,
spx.Open AS Open,
spx.High AS High,
spx.Low AS Low,
spx.Close AS Close,
vix.Open AS Open_VIX,
vix.High AS High_VIX,
vix.Low AS Low_VIX,
vix.Close AS Close_VIX,
vvix.Open AS Open_VVIX,
vvix.High AS High_VVIX,
vvix.Low AS Low_VVIX,
vvix.Close AS Close_VVIX
FROM
SPX_full_1day AS spx
LEFT JOIN
VIX_full_1day AS vix ON spx.Datetime = vix.Datetime AND vix.Datetime > '{data_start_date}'
LEFT JOIN
VVIX_full_1day AS vvix ON spx.Datetime = vvix.Datetime AND vvix.Datetime > '{data_start_date}'
WHERE
spx.Datetime > '{data_start_date}'
'''
data = pd.read_sql_query(sql=query, con=engine.connect())
data['Datetime'] = pd.to_datetime(data['Datetime'])
data = data.set_index('Datetime',drop=True)
# Get incremental date
last_date = data.index.date[-1]
last_date = last_date + BDay(1)
prices_vix = vix.history(start=last_date, interval='1d')
prices_vvix = vvix.history(start=last_date, interval='1d')
prices_spx = spx.history(start=last_date, interval='1d')
if len(prices_spx) > 0:
prices_spx['index'] = [str(x).split()[0] for x in prices_spx.index]
prices_spx['index'] = pd.to_datetime(prices_spx['index']).dt.date
prices_spx.index = prices_spx['index']
prices_spx = prices_spx.drop(columns='index')
prices_spx.index = pd.DatetimeIndex(prices_spx.index)
prices_vix['index'] = [str(x).split()[0] for x in prices_vix.index]
prices_vix['index'] = pd.to_datetime(prices_vix['index']).dt.date
prices_vix.index = prices_vix['index']
prices_vix = prices_vix.drop(columns='index')
prices_vix.index = pd.DatetimeIndex(prices_vix.index)
prices_vvix['index'] = [str(x).split()[0] for x in prices_vvix.index]
prices_vvix['index'] = pd.to_datetime(prices_vvix['index']).dt.date
prices_vvix.index = prices_vvix['index']
prices_vvix = prices_vvix.drop(columns='index')
prices_vvix.index = pd.DatetimeIndex(prices_vvix.index)
data1 = prices_spx.merge(prices_vix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VIX'])
data1 = data1.merge(prices_vvix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VVIX'])
data = pd.concat([data, data1])
else:
data = data.copy()
if mode == 'intra':
from getIntraData import get_intra
df_intra = get_intra(periods_30m)
data = data.merge(df_intra, left_index=True, right_index=True)
else:
data = data.copy()
# Features
data['PrevClose'] = data['Close'].shift(1)
data['Perf5Day'] = data['Close'] > data['Close'].shift(5)
data['Perf5Day_n1'] = data['Perf5Day'].shift(1)
data['Perf5Day_n1'] = data['Perf5Day_n1'].astype(bool)
data['GreenDay'] = (data['Close'] > data['PrevClose']) * 1
data['RedDay'] = (data['Close'] <= data['PrevClose']) * 1
data['VIX5Day'] = data['Close_VIX'] > data['Close_VIX'].shift(5)
data['VIX5Day_n1'] = data['VIX5Day'].astype(bool)
data['VVIX5Day'] = data['Close_VVIX'] > data['Close_VVIX'].shift(5)
data['VVIX5Day_n1'] = data['VVIX5Day'].astype(bool)
data['VIXOpen'] = data['Open_VIX'] > data['Close_VIX'].shift(1)
data['VVIXOpen'] = data['Open_VVIX'] > data['Close_VVIX'].shift(1)
data['VIXOpen'] = data['VIXOpen'].astype(bool)
data['VVIXOpen'] = data['VVIXOpen'].astype(bool)
data['Range'] = data[['Open','High']].max(axis=1) - data[['Low','Open']].min(axis=1) # Current day range in points
data['RangePct'] = data['Range'] / data['Close']
data['VIXLevel'] = pd.qcut(data['Close_VIX'], 4)
data['OHLC4_VIX'] = data[['Open_VIX','High_VIX','Low_VIX','Close_VIX']].mean(axis=1)
data['OHLC4'] = data[['Open','High','Low','Close']].mean(axis=1)
data['OHLC4_Trend'] = data['OHLC4'] > data['OHLC4'].shift(1)
data['OHLC4_Trend'] = data['OHLC4_Trend'].astype(bool)
data['OHLC4_Trend_n1'] = data['OHLC4_Trend'].shift(1)
data['OHLC4_Trend_n1'] = data['OHLC4_Trend_n1'].astype(float)
data['OHLC4_Trend_n2'] = data['OHLC4_Trend'].shift(1)
data['OHLC4_Trend_n2'] = data['OHLC4_Trend_n2'].astype(float)
data['RangePct_n1'] = data['RangePct'].shift(1)
data['RangePct_n2'] = data['RangePct'].shift(2)
data['OHLC4_VIX_n1'] = data['OHLC4_VIX'].shift(1)
data['OHLC4_VIX_n2'] = data['OHLC4_VIX'].shift(2)
data['CurrentGap'] = (data['Open'] - data['PrevClose']) / data['PrevClose']
data['CurrentGapHist'] = data['CurrentGap'].copy()
data['CurrentGap'] = data['CurrentGap'].shift(-1)
data['DayOfWeek'] = pd.to_datetime(data.index)
data['DayOfWeek'] = data['DayOfWeek'].dt.day
# Target -- the next day's low
data['Target'] = (data['OHLC4'] / data['PrevClose']) - 1
data['Target'] = data['Target'].shift(-1)
# data['Target'] = data['RangePct'].shift(-1)
# Target for clf -- whether tomorrow will close above or below today's close
data['Target_clf'] = data['Close'] > data['PrevClose']
data['Target_clf'] = data['Target_clf'].shift(-1)
data['DayOfWeek'] = pd.to_datetime(data.index)
data['Quarter'] = data['DayOfWeek'].dt.quarter
data['DayOfWeek'] = data['DayOfWeek'].dt.weekday
# Calculate up
data['up'] = 100 * (data['High'].shift(1) - data['Open'].shift(1)) / data['Close'].shift(1)
# Calculate upSD
data['upSD'] = data['up'].rolling(30).std(ddof=0)
# Calculate aveUp
data['aveUp'] = data['up'].rolling(30).mean()
data['H1'] = data['Open'] + (data['aveUp'] / 100) * data['Open']
data['H2'] = data['Open'] + ((data['aveUp'] + data['upSD']) / 100) * data['Open']
data['down'] = 100 * (data['Open'].shift(1) - data['Low'].shift(1)) / data['Close'].shift(1)
data['downSD'] = data['down'].rolling(30).std(ddof=0)
data['aveDown'] = data['down'].rolling(30).mean()
data['L1'] = data['Open'] - (data['aveDown'] / 100) * data['Open']
data['L2'] = data['Open'] - ((data['aveDown'] + data['downSD']) / 100) * data['Open']
data = data.assign(
L1Touch = lambda x: x['Low'] < x['L1'],
L2Touch = lambda x: x['Low'] < x['L2'],
H1Touch = lambda x: x['High'] > x['H1'],
H2Touch = lambda x: x['High'] > x['H2'],
L1Break = lambda x: x['Close'] < x['L1'],
L1TouchRed = lambda x: (x['Low'] < x['L2']) & (x['Close'] < x['PrevClose']),
L2TouchL1Break = lambda x: (x['Low'] < x['L2']) & (x['Close'] < x['L1']),
L2Break = lambda x: x['Close'] < x['L2'],
H1Break = lambda x: x['Close'] > x['H1'],
H1TouchGreen = lambda x: (x['High'] > x['H1']) & (x['Close'] > x['PrevClose']),
H2TouchH1Break = lambda x: (x['High'] > x['H2']) & (x['Close'] > x['H1']),
H2Break = lambda x: x['Close'] > x['H2'],
OpenL1 = lambda x: np.where(x['Open'] < x['L1'], 1, 0),
OpenL2 = lambda x: np.where(x['Open'] < x['L2'], 1, 0),
OpenH1 = lambda x: np.where(x['Open'] > x['H1'], 1, 0),
OpenH2 = lambda x: np.where(x['Open'] > x['H2'], 1, 0)
)
data['OpenL1'] = data['OpenL1'].shift(-1)
data['OpenL2'] = data['OpenL2'].shift(-1)
data['OpenH1'] = data['OpenH1'].shift(-1)
data['OpenH2'] = data['OpenH2'].shift(-1)
level_cols = [
'L1Touch',
'L2Touch',
'H1Touch',
'H2Touch',
'L1Break',
'L2Break',
'H1Break',
'H2Break'
]
for col in level_cols:
data[col+'Pct'] = data[col].rolling(100).mean()
# data[col+'Pct'] = data[col+'Pct'].shift(-1)
data['H1BreakTouchPct'] = data['H1Break'].rolling(100).sum() / data['H1Touch'].rolling(100).sum()
data['H2BreakTouchPct'] = data['H2Break'].rolling(100).sum() / data['H2Touch'].rolling(100).sum()
data['L1BreakTouchPct'] = data['L1Break'].rolling(100).sum() / data['L1Touch'].rolling(100).sum()
data['L2BreakTouchPct'] = data['L2Break'].rolling(100).sum() / data['L2Touch'].rolling(100).sum()
data['L1TouchRedPct'] = data['L1TouchRed'].rolling(100).sum() / data['L1Touch'].rolling(100).sum()
data['H1TouchGreenPct'] = data['H1TouchGreen'].rolling(100).sum() / data['H1Touch'].rolling(100).sum()
data['H1BreakH2TouchPct'] = data['H2TouchH1Break'].rolling(100).sum() / data['H2Touch'].rolling(100).sum()
data['L1BreakL2TouchPct'] = data['L2TouchL1Break'].rolling(100).sum() / data['L2Touch'].rolling(100).sum()
if mode=='intra':
# Intraday features
data['CurrentOpen30'] = data['Open30'].shift(-1)
data['CurrentHigh30'] = data['High30'].shift(-1)
data['CurrentLow30'] = data['Low30'].shift(-1)
data['CurrentClose30'] = data['Close30'].shift(-1)
data['CurrentOHLC430'] = data[['CurrentOpen30','CurrentHigh30','CurrentLow30','CurrentClose30']].max(axis=1)
data['OHLC4_Current_Trend'] = data['CurrentOHLC430'] > data['OHLC4']
data['OHLC4_Current_Trend'] = data['OHLC4_Current_Trend'].astype(bool)
data['HistClose30toPrevClose'] = (data['Close30'] / data['PrevClose']) - 1
data['CurrentCloseVIX30'] = data['Close_VIX30'].shift(-1)
data['CurrentOpenVIX30'] = data['Open_VIX30'].shift(-1)
data['CurrentVIXTrend'] = data['CurrentCloseVIX30'] > data['Close_VIX']
# Open to High
data['CurrentHigh30toClose'] = (data['CurrentHigh30'] / data['Close']) - 1
data['CurrentLow30toClose'] = (data['CurrentLow30'] / data['Close']) - 1
data['CurrentClose30toClose'] = (data['CurrentClose30'] / data['Close']) - 1
data['CurrentRange30'] = (data['CurrentHigh30'] - data['CurrentLow30']) / data['Close']
data['GapFill30'] = [low <= prev_close if gap > 0 else high >= prev_close for high, low, prev_close, gap in zip(data['CurrentHigh30'], data['CurrentLow30'], data['Close'], data['CurrentGap'])]
data['CloseL1'] = np.where(data['Close30'] < data['L1'], 1, 0)
data['CloseL2'] = np.where(data['Close30'] < data['L2'], 1, 0)
data['CloseH1'] = np.where(data['Close30'] > data['H1'], 1, 0)
data['CloseH2'] = np.where(data['Close30'] > data['H2'], 1, 0)
data['CloseL1'] = data['CloseL1'].shift(-1)
data['CloseL2'] = data['CloseL2'].shift(-1)
data['CloseH1'] = data['CloseH1'].shift(-1)
data['CloseH2'] = data['CloseH2'].shift(-1)
def get_quintiles(df, col_name, q):
return df.groupby(pd.qcut(df[col_name], q))['GreenDay'].mean()
probas = []
# Given the current price level
for i, pct in enumerate(data['CurrentClose30toClose']):
try:
# Split
df_q = get_quintiles(data.iloc[:i], 'HistClose30toPrevClose', 10)
for q in df_q.index:
if q.left <= pct <= q.right:
p = df_q[q]
except:
p = None
probas.append(p)
data['GreenProbas'] = probas
engine = create_engine(
f"mysql+mysqldb://{os.getenv('DATABASE_USERNAME')}:" \
f"{os.getenv('DATABASE_PASSWORD')}@{os.getenv('DATABASE_HOST')}/" \
f"{os.getenv('DATABASE')}?ssl_ca=ca-certificates.crt&ssl_mode=VERIFY_IDENTITY"
)
df_releases = pd.read_sql_query('select * from releases', con=engine)
df_releases = df_releases.set_index('Datetime')
data = data.merge(df_releases, how = 'left', left_index=True, right_index=True)
for n in tqdm(df_releases.columns, desc='Merging econ data'):
# Get the name of the release
# n = releases[rid]['name']
# Merge the corresponding DF of the release
# data = data.merge(releases[rid]['df'], how = 'left', left_index=True, right_index=True)
# Create a column that shifts the value in the merged column up by 1
data[f'{n}_shift'] = data[n].shift(-1)
# Fill the rest with zeroes
data[n] = data[n].fillna(0)
data[f'{n}_shift'] = data[f'{n}_shift'].fillna(0)
data['BigNewsDay'] = data[[x for x in data.columns if '_shift' in x]].max(axis=1)
def cumul_sum(col):
nums = []
s = 0
for x in col:
if x == 1:
s += 1
elif x == 0:
s = 0
nums.append(s)
return nums
consec_green = cumul_sum(data['GreenDay'].values)
consec_red = cumul_sum(data['RedDay'].values)
data['DaysGreen'] = consec_green
data['DaysRed'] = consec_red
final_row = data.index[-2]
if mode=='daily':
from dailyCols import model_cols
elif mode=='intra':
from intraCols import model_cols
df_final = data.loc[:final_row, model_cols + ['Target', 'Target_clf']]
df_final = df_final.dropna(subset=['Target','Target_clf'])
# df_final = df_final.dropna(subset=['Target','Target_clf','Perf5Day_n1'])
return data, df_final, final_row |