Spaces:
Runtime error
Runtime error
--
Browse files
app.py
CHANGED
|
@@ -1,129 +1,71 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 3 |
from PIL import Image, ImageDraw
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
processor = DetrImageProcessor.from_pretrained(model_name)
|
| 9 |
-
model = DetrForObjectDetection.from_pretrained(model_name)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
outputs = model(**inputs)
|
| 18 |
-
|
| 19 |
-
# Post-process predictions to extract bounding boxes and labels
|
| 20 |
-
target_sizes = torch.tensor([image.size[::-1]]) # Image size in (height, width)
|
| 21 |
-
results = processor.post_process_object_detection(
|
| 22 |
-
outputs, target_sizes=target_sizes, threshold=0.9
|
| 23 |
-
)[0]
|
| 24 |
-
|
| 25 |
-
# Draw bounding boxes and labels on the image
|
| 26 |
-
draw = ImageDraw.Draw(image)
|
| 27 |
-
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
|
| 28 |
-
box = [int(b) for b in box]
|
| 29 |
-
label_text = f"{model.config.id2label[label]}: {score:.2f}"
|
| 30 |
-
draw.rectangle(box, outline="red", width=3)
|
| 31 |
-
draw.text((box[0], box[1]), label_text, fill="red")
|
| 32 |
-
|
| 33 |
-
return image
|
| 34 |
-
|
| 35 |
-
# Define the Gradio interface
|
| 36 |
-
iface = gr.Interface(
|
| 37 |
-
fn=detect_accident,
|
| 38 |
-
inputs=gr.Image(type="pil"),
|
| 39 |
-
outputs=gr.Image(type="pil"),
|
| 40 |
-
title="Traffic Accident Detection",
|
| 41 |
-
description="Upload an image to detect traffic accidents using the DETR model."
|
| 42 |
)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# from fastapi import FastAPI, File, UploadFile
|
| 60 |
-
# from fastapi.responses import JSONResponse
|
| 61 |
-
# from fastapi.middleware.cors import CORSMiddleware
|
| 62 |
-
# from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 63 |
-
# from PIL import Image, ImageDraw
|
| 64 |
-
# import io
|
| 65 |
-
# import torch
|
| 66 |
-
|
| 67 |
-
# # Initialize FastAPI app
|
| 68 |
-
# app = FastAPI()
|
| 69 |
-
|
| 70 |
-
# # Add CORS middleware to allow communication with external clients
|
| 71 |
-
# app.add_middleware(
|
| 72 |
-
# CORSMiddleware,
|
| 73 |
-
# allow_origins=["*"], # Change this to the specific domain in production
|
| 74 |
-
# allow_methods=["*"],
|
| 75 |
-
# allow_headers=["*"],
|
| 76 |
-
# )
|
| 77 |
-
|
| 78 |
-
# # Load the model and processor
|
| 79 |
-
# model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
| 80 |
-
# processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
| 81 |
-
|
| 82 |
-
# def detect_accident(image):
|
| 83 |
-
# """Runs accident detection on the input image."""
|
| 84 |
-
# inputs = processor(images=image, return_tensors="pt")
|
| 85 |
-
# outputs = model(**inputs)
|
| 86 |
-
|
| 87 |
-
# # Post-process results
|
| 88 |
-
# target_sizes = torch.tensor([image.size[::-1]])
|
| 89 |
-
# results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
| 90 |
-
|
| 91 |
-
# # Draw bounding boxes and labels
|
| 92 |
-
# draw = ImageDraw.Draw(image)
|
| 93 |
-
# for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
| 94 |
-
# x_min, y_min, x_max, y_max = box
|
| 95 |
-
# draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
| 96 |
-
# draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
| 97 |
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
#
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
#
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
|
| 128 |
|
| 129 |
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 5 |
from PIL import Image, ImageDraw
|
| 6 |
+
import io
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
# Initialize FastAPI app
|
| 10 |
+
app = FastAPI()
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Add CORS middleware to allow communication with external clients
|
| 13 |
+
app.add_middleware(
|
| 14 |
+
CORSMiddleware,
|
| 15 |
+
allow_origins=["*"], # Change this to the specific domain in production
|
| 16 |
+
allow_methods=["*"],
|
| 17 |
+
allow_headers=["*"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
+
# Load the model and processor
|
| 21 |
+
model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
| 22 |
+
processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def detect_accident(image):
|
| 25 |
+
"""Runs accident detection on the input image."""
|
| 26 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 27 |
+
outputs = model(**inputs)
|
| 28 |
|
| 29 |
+
# Post-process results
|
| 30 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 31 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
| 32 |
|
| 33 |
+
# Draw bounding boxes and labels
|
| 34 |
+
draw = ImageDraw.Draw(image)
|
| 35 |
+
for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
| 36 |
+
x_min, y_min, x_max, y_max = box
|
| 37 |
+
draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
| 38 |
+
draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
return image
|
| 41 |
|
| 42 |
+
@app.post("/detect_accident")
|
| 43 |
+
async def process_frame(file: UploadFile = File(...)):
|
| 44 |
+
"""API endpoint to process an uploaded frame."""
|
| 45 |
+
try:
|
| 46 |
+
# Read and preprocess image
|
| 47 |
+
image = Image.open(io.BytesIO(await file.read()))
|
| 48 |
+
image = image.resize((256, int(image.height * 256 / image.width))) # Resize while maintaining aspect ratio
|
| 49 |
+
|
| 50 |
+
# Detect accidents
|
| 51 |
+
processed_image = detect_accident(image)
|
| 52 |
+
|
| 53 |
+
# Save the processed image into bytes to send back
|
| 54 |
+
img_byte_arr = io.BytesIO()
|
| 55 |
+
processed_image.save(img_byte_arr, format="JPEG")
|
| 56 |
+
img_byte_arr.seek(0)
|
| 57 |
+
|
| 58 |
+
return JSONResponse(
|
| 59 |
+
content={"status": "success", "message": "Frame processed successfully"},
|
| 60 |
+
media_type="image/jpeg"
|
| 61 |
+
)
|
| 62 |
+
except Exception as e:
|
| 63 |
+
return JSONResponse(content={"status": "error", "message": str(e)}, status_code=500)
|
| 64 |
+
|
| 65 |
+
# Run the app
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
import uvicorn
|
| 68 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 69 |
|
| 70 |
|
| 71 |
|