Spaces:
Runtime error
Runtime error
re-added UI, test
Browse files
app.py
CHANGED
@@ -1,152 +1,152 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
4 |
-
from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
-
from PIL import Image, ImageDraw
|
6 |
-
import io
|
7 |
-
import torch
|
8 |
-
|
9 |
-
# Initialize FastAPI app
|
10 |
-
app = FastAPI()
|
11 |
-
|
12 |
-
# Add CORS middleware to allow communication with external clients
|
13 |
-
app.add_middleware(
|
14 |
-
CORSMiddleware,
|
15 |
-
allow_origins=["*"], # Change this to the specific domain in production
|
16 |
-
allow_methods=["*"],
|
17 |
-
allow_headers=["*"],
|
18 |
-
)
|
19 |
-
|
20 |
-
# Load the model and processor
|
21 |
-
model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
22 |
-
processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
23 |
-
|
24 |
-
def detect_accident(image):
|
25 |
-
"""Runs accident detection on the input image."""
|
26 |
-
inputs = processor(images=image, return_tensors="pt")
|
27 |
-
outputs = model(**inputs)
|
28 |
-
|
29 |
-
# Post-process results
|
30 |
-
target_sizes = torch.tensor([image.size[::-1]])
|
31 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
32 |
-
|
33 |
-
# Draw bounding boxes and labels
|
34 |
-
draw = ImageDraw.Draw(image)
|
35 |
-
for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
36 |
-
x_min, y_min, x_max, y_max = box
|
37 |
-
draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
38 |
-
draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
39 |
-
|
40 |
-
return image
|
41 |
-
|
42 |
-
@app.post("/detect_accident")
|
43 |
-
async def process_frame(file: UploadFile = File(...)):
|
44 |
-
"""API endpoint to process an uploaded frame."""
|
45 |
-
try:
|
46 |
-
# Read and preprocess image
|
47 |
-
image = Image.open(io.BytesIO(await file.read()))
|
48 |
-
image = image.resize((256, int(image.height * 256 / image.width))) # Resize while maintaining aspect ratio
|
49 |
-
|
50 |
-
# Detect accidents
|
51 |
-
processed_image = detect_accident(image)
|
52 |
-
|
53 |
-
# Save the processed image into bytes to send back
|
54 |
-
img_byte_arr = io.BytesIO()
|
55 |
-
processed_image.save(img_byte_arr, format="JPEG")
|
56 |
-
img_byte_arr.seek(0)
|
57 |
-
|
58 |
-
return JSONResponse(
|
59 |
-
content={"status": "success", "message": "Frame processed successfully"},
|
60 |
-
media_type="image/jpeg"
|
61 |
-
)
|
62 |
-
except Exception as e:
|
63 |
-
return JSONResponse(content={"status": "error", "message": str(e)}, status_code=500)
|
64 |
-
|
65 |
-
# Run the app
|
66 |
-
if __name__ == "__main__":
|
67 |
-
import uvicorn
|
68 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
69 |
-
|
70 |
-
# import gradio as gr
|
71 |
# from transformers import DetrImageProcessor, DetrForObjectDetection
|
72 |
# from PIL import Image, ImageDraw
|
|
|
73 |
# import torch
|
74 |
-
# import cv2
|
75 |
-
# import numpy as np
|
76 |
|
77 |
-
# #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
79 |
# processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
80 |
|
81 |
-
# # Function to detect accidents in an image
|
82 |
# def detect_accident(image):
|
|
|
83 |
# inputs = processor(images=image, return_tensors="pt")
|
84 |
# outputs = model(**inputs)
|
85 |
|
86 |
-
# # Post-process
|
87 |
# target_sizes = torch.tensor([image.size[::-1]])
|
88 |
# results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
89 |
|
90 |
-
# # Draw boxes and labels
|
91 |
# draw = ImageDraw.Draw(image)
|
92 |
# for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
93 |
# x_min, y_min, x_max, y_max = box
|
94 |
# draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
95 |
# draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
96 |
-
|
97 |
# return image
|
98 |
|
99 |
-
#
|
100 |
-
# def
|
101 |
-
#
|
102 |
-
#
|
103 |
-
#
|
104 |
-
#
|
105 |
-
#
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
|
148 |
-
#
|
149 |
-
|
150 |
-
|
151 |
|
152 |
-
|
|
|
1 |
+
# from fastapi import FastAPI, File, UploadFile
|
2 |
+
# from fastapi.responses import JSONResponse
|
3 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
# from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
# from PIL import Image, ImageDraw
|
6 |
+
# import io
|
7 |
# import torch
|
|
|
|
|
8 |
|
9 |
+
# # Initialize FastAPI app
|
10 |
+
# app = FastAPI()
|
11 |
+
|
12 |
+
# # Add CORS middleware to allow communication with external clients
|
13 |
+
# app.add_middleware(
|
14 |
+
# CORSMiddleware,
|
15 |
+
# allow_origins=["*"], # Change this to the specific domain in production
|
16 |
+
# allow_methods=["*"],
|
17 |
+
# allow_headers=["*"],
|
18 |
+
# )
|
19 |
+
|
20 |
+
# # Load the model and processor
|
21 |
# model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
22 |
# processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
23 |
|
|
|
24 |
# def detect_accident(image):
|
25 |
+
# """Runs accident detection on the input image."""
|
26 |
# inputs = processor(images=image, return_tensors="pt")
|
27 |
# outputs = model(**inputs)
|
28 |
|
29 |
+
# # Post-process results
|
30 |
# target_sizes = torch.tensor([image.size[::-1]])
|
31 |
# results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
32 |
|
33 |
+
# # Draw bounding boxes and labels
|
34 |
# draw = ImageDraw.Draw(image)
|
35 |
# for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
36 |
# x_min, y_min, x_max, y_max = box
|
37 |
# draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
38 |
# draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
39 |
+
|
40 |
# return image
|
41 |
|
42 |
+
# @app.post("/detect_accident")
|
43 |
+
# async def process_frame(file: UploadFile = File(...)):
|
44 |
+
# """API endpoint to process an uploaded frame."""
|
45 |
+
# try:
|
46 |
+
# # Read and preprocess image
|
47 |
+
# image = Image.open(io.BytesIO(await file.read()))
|
48 |
+
# image = image.resize((256, int(image.height * 256 / image.width))) # Resize while maintaining aspect ratio
|
49 |
+
|
50 |
+
# # Detect accidents
|
51 |
+
# processed_image = detect_accident(image)
|
52 |
+
|
53 |
+
# # Save the processed image into bytes to send back
|
54 |
+
# img_byte_arr = io.BytesIO()
|
55 |
+
# processed_image.save(img_byte_arr, format="JPEG")
|
56 |
+
# img_byte_arr.seek(0)
|
57 |
+
|
58 |
+
# return JSONResponse(
|
59 |
+
# content={"status": "success", "message": "Frame processed successfully"},
|
60 |
+
# media_type="image/jpeg"
|
61 |
+
# )
|
62 |
+
# except Exception as e:
|
63 |
+
# return JSONResponse(content={"status": "error", "message": str(e)}, status_code=500)
|
64 |
+
|
65 |
+
# # Run the app
|
66 |
+
# if __name__ == "__main__":
|
67 |
+
# import uvicorn
|
68 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
69 |
+
|
70 |
+
import gradio as gr
|
71 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
72 |
+
from PIL import Image, ImageDraw
|
73 |
+
import torch
|
74 |
+
import cv2
|
75 |
+
import numpy as np
|
76 |
+
|
77 |
+
# Load model and processor
|
78 |
+
model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
79 |
+
processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
80 |
+
|
81 |
+
# Function to detect accidents in an image
|
82 |
+
def detect_accident(image):
|
83 |
+
inputs = processor(images=image, return_tensors="pt")
|
84 |
+
outputs = model(**inputs)
|
85 |
+
|
86 |
+
# Post-process the results
|
87 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
88 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
89 |
+
|
90 |
+
# Draw boxes and labels on the image
|
91 |
+
draw = ImageDraw.Draw(image)
|
92 |
+
for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
93 |
+
x_min, y_min, x_max, y_max = box
|
94 |
+
draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
95 |
+
draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
96 |
+
|
97 |
+
return image
|
98 |
+
|
99 |
+
# Function to detect accidents frame-by-frame in a video
|
100 |
+
def detect_accident_in_video(video_path):
|
101 |
+
cap = cv2.VideoCapture(video_path)
|
102 |
+
frames = []
|
103 |
+
while True:
|
104 |
+
ret, frame = cap.read()
|
105 |
+
if not ret:
|
106 |
+
break
|
107 |
|
108 |
+
# Convert frame to PIL Image
|
109 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
110 |
+
pil_frame = Image.fromarray(frame_rgb)
|
111 |
+
|
112 |
+
# Run accident detection on the frame
|
113 |
+
processed_frame = detect_accident(pil_frame)
|
114 |
+
|
115 |
+
# Convert PIL image back to numpy array for video
|
116 |
+
frames.append(np.array(processed_frame))
|
117 |
+
|
118 |
+
cap.release()
|
119 |
+
|
120 |
+
# Save processed frames as output video
|
121 |
+
height, width, _ = frames[0].shape
|
122 |
+
out = cv2.VideoWriter("output.mp4", cv2.VideoWriter_fourcc(*"mp4v"), 10, (width, height))
|
123 |
+
for frame in frames:
|
124 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
125 |
+
out.release()
|
126 |
+
|
127 |
+
return "output.mp4"
|
128 |
+
|
129 |
+
# Gradio app interface
|
130 |
+
with gr.Blocks() as interface:
|
131 |
+
gr.Markdown("# Traffic Accident Detection")
|
132 |
+
gr.Markdown(
|
133 |
+
"Upload an image or video to detect traffic accidents using the DETR model. "
|
134 |
+
"For videos, the system processes frame by frame and outputs a new video with accident detection."
|
135 |
+
)
|
136 |
+
|
137 |
+
# Input components
|
138 |
+
with gr.Tab("Image Input"):
|
139 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
140 |
+
image_output = gr.Image(type="pil", label="Detection Output")
|
141 |
+
image_button = gr.Button("Detect Accidents in Image")
|
142 |
|
143 |
+
with gr.Tab("Video Input"):
|
144 |
+
video_input = gr.Video(label="Upload Video")
|
145 |
+
video_output = gr.Video(label="Processed Video")
|
146 |
+
video_button = gr.Button("Detect Accidents in Video")
|
147 |
|
148 |
+
# Define behaviors
|
149 |
+
image_button.click(fn=detect_accident, inputs=image_input, outputs=image_output)
|
150 |
+
video_button.click(fn=detect_accident_in_video, inputs=video_input, outputs=video_output)
|
151 |
|
152 |
+
interface.launch()
|