Spaces:
Configuration error
Configuration error
Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,224 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
task_categories:
|
3 |
+
- image-segmentation
|
4 |
+
- object-detection
|
5 |
+
- robotics
|
6 |
+
- zero-shot-object-detection
|
7 |
+
size_categories:
|
8 |
+
- n>1T
|
9 |
+
configs:
|
10 |
+
- config_name: MegaPose-ShapeNetCore
|
11 |
+
data_files: MegaPose-ShapeNetCore/*.tar
|
12 |
+
- config_name: MegaPose-GSO
|
13 |
+
data_files: MegaPose-GSO/*.tar
|
14 |
---
|
15 |
+
# BOP: Benchmark for 6D Object Pose Estimation
|
16 |
+
The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 3D rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust, scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.
|
17 |
|
18 |
+

|
19 |
+
|
20 |
+
Homepage: https://bop.felk.cvut.cz/home/
|
21 |
+
|
22 |
+
Toolkit: https://github.com/thodan/bop_toolkit
|
23 |
+
|
24 |
+
## Downloading datasets
|
25 |
+
|
26 |
+
#### Option 1: Using `huggingface_hub`:
|
27 |
+
|
28 |
+
<details><summary>Click to expand</summary>
|
29 |
+
|
30 |
+
a. Install the library:
|
31 |
+
```
|
32 |
+
pip install --upgrade huggingface_hub
|
33 |
+
```
|
34 |
+
b. Download the dataset:
|
35 |
+
```
|
36 |
+
from huggingface_hub import snapshot_download
|
37 |
+
|
38 |
+
dataset_name = "hope"
|
39 |
+
local_dir = "./datasets"
|
40 |
+
|
41 |
+
snapshot_download(repo_id="bop-benchmark/datasets",
|
42 |
+
allow_patterns=f"{dataset_name}/*zip",
|
43 |
+
repo_type="dataset",
|
44 |
+
local_dir=local_dir)
|
45 |
+
```
|
46 |
+
If you want to download the entire BOP datasets (~3TB), please remove the `allow_patterns` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
|
47 |
+
|
48 |
+
</details>
|
49 |
+
|
50 |
+
|
51 |
+
#### Option 2: Using `huggingface_hub[cli]`:
|
52 |
+
|
53 |
+
<details><summary>Click to expand</summary>
|
54 |
+
|
55 |
+
a. Install the library:
|
56 |
+
```
|
57 |
+
pip install -U "huggingface_hub[cli]"
|
58 |
+
```
|
59 |
+
b. Download the dataset:
|
60 |
+
```
|
61 |
+
export LOCAL_DIR=./datasets
|
62 |
+
export DATASET_NAME=hope
|
63 |
+
|
64 |
+
huggingface-cli download bop-benchmark/datasets --include "$DATASET_NAME/*.zip" --local-dir $LOCAL_DIR --repo-type=dataset
|
65 |
+
```
|
66 |
+
Please remove this argument `--include "$DATASET_NAME/*.zip"` to download entire BOP datasets (~3TB). More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
|
67 |
+
</details>
|
68 |
+
|
69 |
+
#### Option 3: Using `wget`:
|
70 |
+
|
71 |
+
<details><summary>Click to expand</summary>
|
72 |
+
|
73 |
+
Similar `wget` command as in [BOP website](https://bop.felk.cvut.cz/datasets/) can be used to download the dataset from huggingface hub:
|
74 |
+
```
|
75 |
+
export SRC=https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main
|
76 |
+
|
77 |
+
wget $SRC/lm/lm_base.zip # Base archive
|
78 |
+
wget $SRC/lm/lm_models.zip # 3D object models
|
79 |
+
wget $SRC/lm/lm_test_all.zip # All test images ("_bop19" for a subset)
|
80 |
+
wget $SRC/lm/lm_train_pbr.zip # PBR training images
|
81 |
+
```
|
82 |
+
</details>
|
83 |
+
|
84 |
+
Datasets are stored in `.zip` format. You can extract them using the following command:
|
85 |
+
```
|
86 |
+
bash scripts/extract_bop.sh
|
87 |
+
```
|
88 |
+
|
89 |
+
If you are running on a machine with high bandwidth, you can increase your download speed by adding the following environment variable:
|
90 |
+
```
|
91 |
+
pip install huggingface_hub[hf_transfer]
|
92 |
+
export HF_HUB_ENABLE_HF_TRANSFER=1
|
93 |
+
```
|
94 |
+
|
95 |
+
## Uploading datasets
|
96 |
+
|
97 |
+
You create a new dataset and want to share it with BOP community. Here is a step-by-step guide to upload the dataset and create a pull request to [our huggingface hub](https://huggingface.co/datasets/bop-benchmark/datasets/). Feel free to reach out to [email protected] if you have any questions.
|
98 |
+
|
99 |
+
Similar to the download process, you can upload the dataset using the `huggingface_hub` library or `huggingface_hub[cli]`. We recommend using `huggingface_hub[cli]` for its simplicity.
|
100 |
+
|
101 |
+
#### Option 1: Using `huggingface_hub[cli]`:
|
102 |
+
|
103 |
+
<details><summary>Click to expand</summary>
|
104 |
+
|
105 |
+
a. Install the library:
|
106 |
+
```
|
107 |
+
pip install -U "huggingface_hub[cli]"
|
108 |
+
```
|
109 |
+
|
110 |
+
b. Log-in and create a token
|
111 |
+
```
|
112 |
+
huggingface-cli login
|
113 |
+
```
|
114 |
+
Then go to [this link](https://huggingface.co/settings/tokens) and generate a token. IMPORTANT: the token should have write access as shown below:
|
115 |
+
|
116 |
+
<img src="./media/token_hf.png" alt="image" width="300">
|
117 |
+
|
118 |
+
|
119 |
+
Make sure you are in the bop-benchmark group by running:
|
120 |
+
```
|
121 |
+
huggingface-cli whoami
|
122 |
+
```
|
123 |
+
|
124 |
+
c. Upload dataset:
|
125 |
+
|
126 |
+
The command is applied for both folders and specific files:
|
127 |
+
```
|
128 |
+
# Usage: huggingface-cli upload bop-benchmark/datasets [local_path] [path_in_repo] --repo-type=dataset --create-pr
|
129 |
+
```
|
130 |
+
For example, to upload hope dataset:
|
131 |
+
```
|
132 |
+
export LOCAL_FOLDER=./datasets/hope
|
133 |
+
export HF_FOLDER=/hope
|
134 |
+
|
135 |
+
huggingface-cli upload bop-benchmark/datasets $LOCAL_FOLDER $HF_FOLDER --repo-type=dataset --create-pr
|
136 |
+
```
|
137 |
+
|
138 |
+
</details>
|
139 |
+
|
140 |
+
#### Option 2: Using `huggingface_hub`:
|
141 |
+
|
142 |
+
<details><summary>Click to expand</summary>
|
143 |
+
|
144 |
+
a. Install the library:
|
145 |
+
```
|
146 |
+
pip install --upgrade huggingface_hub
|
147 |
+
```
|
148 |
+
b. Creating a pull-request:
|
149 |
+
|
150 |
+
We recommend organizing the dataset in a folder and then uploading it to the huggingface hub. For example, to upload `lmo`:
|
151 |
+
```
|
152 |
+
from huggingface_hub import HfApi, CommitOperationAdd
|
153 |
+
|
154 |
+
dataset_name = "lmo"
|
155 |
+
local_dir = "./datasets/lmo"
|
156 |
+
|
157 |
+
operations = []
|
158 |
+
for file in local_dir.glob("*"):
|
159 |
+
add_commit = CommitOperationAdd(
|
160 |
+
path_in_repo=f"/{dataset_name}",
|
161 |
+
path_or_fileobj=local_dir,
|
162 |
+
)
|
163 |
+
operations.append(add_commit)
|
164 |
+
|
165 |
+
|
166 |
+
api = HfApi()
|
167 |
+
MY_TOKEN = # get from https://huggingface.co/settings/tokens
|
168 |
+
api.create_commit(repo_id="bop-benchmark/datasets",
|
169 |
+
repo_type="dataset",
|
170 |
+
commit_message=f"adding {dataset_name} dataset",
|
171 |
+
token=MY_TOKEN,
|
172 |
+
operations=operations,
|
173 |
+
create_pr=True)
|
174 |
+
|
175 |
+
```
|
176 |
+
If your dataset is large (> 500 GB), you can upload it in chunks by adding the `multi_commits=True, multi_commits_verbose=True,` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/package_reference/hf_api#huggingface_hub.HfApi.create_pull_request).
|
177 |
+
|
178 |
+
</details>
|
179 |
+
|
180 |
+
## FAQ
|
181 |
+
|
182 |
+
#### 1. How to upload a large file > 50 GB?
|
183 |
+
Note that HuggingFace limits the size of each file to 50 GB. If your dataset is larger, you can split it into smaller files:
|
184 |
+
```
|
185 |
+
zip -s 50g input.zip --out output.zip
|
186 |
+
```
|
187 |
+
This command will split the `input.zip` into multiple files of 50GB size `output.zip`, `output.z01`, `output.z01`, ... You can then extract them using one of the following commands:
|
188 |
+
```
|
189 |
+
# option 1: combine
|
190 |
+
zip -s0 output.zip --out input.zip
|
191 |
+
|
192 |
+
# option 2: using 7z to unzip directly
|
193 |
+
7z x output.zip
|
194 |
+
```
|
195 |
+
#### 2. How to increase download speed?
|
196 |
+
If you are running on a machine with high bandwidth, you can increase your download speed by adding the following environment variable:
|
197 |
+
```
|
198 |
+
pip install huggingface_hub[hf_transfer]
|
199 |
+
export HF_HUB_ENABLE_HF_TRANSFER=1
|
200 |
+
```
|
201 |
+
|
202 |
+
## Publications
|
203 |
+
- [**BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects**](https://arxiv.org/pdf/2403.09799.pdf)
|
204 |
+
- T. Hodaň, M. Sundermeyer, Y. Labbé, V. N. Nguyen, G. Wang, E. Brachmann, B. Drost, V. Lepetit, C. Rother, J. Matas
|
205 |
+
- IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2024, Seattle
|
206 |
+
- [PDF](https://arxiv.org/pdf/2403.09799.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2023/slides/bop_challenge_2023_results.pdf), [VIDEO](https://www.youtube.com/watch?v=PcDszFANcDQ), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/hodan2023bop.bib)
|
207 |
+
|
208 |
+
- [**BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of Specific Rigid Objects**](https://arxiv.org/pdf/2302.13075.pdf)
|
209 |
+
- M. Sundermeyer, T. Hodaň, Y. Labbé, G. Wang, E. Brachmann, B. Drost, C. Rother, J. Matas
|
210 |
+
- IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2023, Vancouver
|
211 |
+
- [PDF](https://arxiv.org/pdf/2302.13075.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2022/slides/bop_challenge_2022_results.pdf), [VIDEO 1](https://vimeo.com/showcase/9946695/video/768457697), [VIDEO 2](https://vimeo.com/showcase/9946695/video/768458355), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/sundermeyer2022bop.bib)
|
212 |
+
|
213 |
+
- [**BOP Challenge 2020 on 6D Object Localization**](https://arxiv.org/pdf/2009.07378.pdf)
|
214 |
+
- T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother, J. Matas
|
215 |
+
- European Conference on Computer Vision Workshops (ECCVW) 2020, Glasgow
|
216 |
+
- [PDF](https://arxiv.org/pdf/2009.07378.pdf), [SLIDES](https://bop.felk.cvut.cz/media/bop_challenge_2020_results.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2020bop.bib)
|
217 |
+
|
218 |
+
- [**BOP: Benchmark for 6D Object Pose Estimation**](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf)
|
219 |
+
- T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. G. Buch, D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J. Matas, C. Rother
|
220 |
+
- European Conference on Computer Vision (ECCV) 2018, Munich
|
221 |
+
- [PDF](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf), [SLIDES](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_slides_eccv.pdf), [POSTER](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_poster.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.bib)
|
222 |
+
|
223 |
+
|
224 |
+
The online evaluation system has been developed by [T. Hodaň](http://www.hodan.xyz) and [A. Melenovský](https://www.linkedin.com/in/anton%C3%ADn-melenovsk%C3%BD-09907b151/).
|