nv-nguyen commited on
Commit
367db65
·
verified ·
1 Parent(s): 4576a7a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +221 -7
README.md CHANGED
@@ -1,10 +1,224 @@
1
  ---
2
- title: README
3
- emoji: 🏆
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: static
7
- pinned: false
 
 
 
 
 
 
8
  ---
 
 
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ task_categories:
3
+ - image-segmentation
4
+ - object-detection
5
+ - robotics
6
+ - zero-shot-object-detection
7
+ size_categories:
8
+ - n>1T
9
+ configs:
10
+ - config_name: MegaPose-ShapeNetCore
11
+ data_files: MegaPose-ShapeNetCore/*.tar
12
+ - config_name: MegaPose-GSO
13
+ data_files: MegaPose-GSO/*.tar
14
  ---
15
+ # BOP: Benchmark for 6D Object Pose Estimation
16
+ The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 3D rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust, scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.
17
 
18
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/637fb712084fca81acde6e40/8WSyi9CNNsfDHC-lwaRpG.jpeg)
19
+
20
+ Homepage: https://bop.felk.cvut.cz/home/
21
+
22
+ Toolkit: https://github.com/thodan/bop_toolkit
23
+
24
+ ## Downloading datasets
25
+
26
+ #### Option 1: Using `huggingface_hub`:
27
+
28
+ <details><summary>Click to expand</summary>
29
+
30
+ a. Install the library:
31
+ ```
32
+ pip install --upgrade huggingface_hub
33
+ ```
34
+ b. Download the dataset:
35
+ ```
36
+ from huggingface_hub import snapshot_download
37
+
38
+ dataset_name = "hope"
39
+ local_dir = "./datasets"
40
+
41
+ snapshot_download(repo_id="bop-benchmark/datasets",
42
+ allow_patterns=f"{dataset_name}/*zip",
43
+ repo_type="dataset",
44
+ local_dir=local_dir)
45
+ ```
46
+ If you want to download the entire BOP datasets (~3TB), please remove the `allow_patterns` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
47
+
48
+ </details>
49
+
50
+
51
+ #### Option 2: Using `huggingface_hub[cli]`:
52
+
53
+ <details><summary>Click to expand</summary>
54
+
55
+ a. Install the library:
56
+ ```
57
+ pip install -U "huggingface_hub[cli]"
58
+ ```
59
+ b. Download the dataset:
60
+ ```
61
+ export LOCAL_DIR=./datasets
62
+ export DATASET_NAME=hope
63
+
64
+ huggingface-cli download bop-benchmark/datasets --include "$DATASET_NAME/*.zip" --local-dir $LOCAL_DIR --repo-type=dataset
65
+ ```
66
+ Please remove this argument `--include "$DATASET_NAME/*.zip"` to download entire BOP datasets (~3TB). More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
67
+ </details>
68
+
69
+ #### Option 3: Using `wget`:
70
+
71
+ <details><summary>Click to expand</summary>
72
+
73
+ Similar `wget` command as in [BOP website](https://bop.felk.cvut.cz/datasets/) can be used to download the dataset from huggingface hub:
74
+ ```
75
+ export SRC=https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main
76
+
77
+ wget $SRC/lm/lm_base.zip # Base archive
78
+ wget $SRC/lm/lm_models.zip # 3D object models
79
+ wget $SRC/lm/lm_test_all.zip # All test images ("_bop19" for a subset)
80
+ wget $SRC/lm/lm_train_pbr.zip # PBR training images
81
+ ```
82
+ </details>
83
+
84
+ Datasets are stored in `.zip` format. You can extract them using the following command:
85
+ ```
86
+ bash scripts/extract_bop.sh
87
+ ```
88
+
89
+ If you are running on a machine with high bandwidth, you can increase your download speed by adding the following environment variable:
90
+ ```
91
+ pip install huggingface_hub[hf_transfer]
92
+ export HF_HUB_ENABLE_HF_TRANSFER=1
93
+ ```
94
+
95
+ ## Uploading datasets
96
+
97
+ You create a new dataset and want to share it with BOP community. Here is a step-by-step guide to upload the dataset and create a pull request to [our huggingface hub](https://huggingface.co/datasets/bop-benchmark/datasets/). Feel free to reach out to [email protected] if you have any questions.
98
+
99
+ Similar to the download process, you can upload the dataset using the `huggingface_hub` library or `huggingface_hub[cli]`. We recommend using `huggingface_hub[cli]` for its simplicity.
100
+
101
+ #### Option 1: Using `huggingface_hub[cli]`:
102
+
103
+ <details><summary>Click to expand</summary>
104
+
105
+ a. Install the library:
106
+ ```
107
+ pip install -U "huggingface_hub[cli]"
108
+ ```
109
+
110
+ b. Log-in and create a token
111
+ ```
112
+ huggingface-cli login
113
+ ```
114
+ Then go to [this link](https://huggingface.co/settings/tokens) and generate a token. IMPORTANT: the token should have write access as shown below:
115
+
116
+ <img src="./media/token_hf.png" alt="image" width="300">
117
+
118
+
119
+ Make sure you are in the bop-benchmark group by running:
120
+ ```
121
+ huggingface-cli whoami
122
+ ```
123
+
124
+ c. Upload dataset:
125
+
126
+ The command is applied for both folders and specific files:
127
+ ```
128
+ # Usage: huggingface-cli upload bop-benchmark/datasets [local_path] [path_in_repo] --repo-type=dataset --create-pr
129
+ ```
130
+ For example, to upload hope dataset:
131
+ ```
132
+ export LOCAL_FOLDER=./datasets/hope
133
+ export HF_FOLDER=/hope
134
+
135
+ huggingface-cli upload bop-benchmark/datasets $LOCAL_FOLDER $HF_FOLDER --repo-type=dataset --create-pr
136
+ ```
137
+
138
+ </details>
139
+
140
+ #### Option 2: Using `huggingface_hub`:
141
+
142
+ <details><summary>Click to expand</summary>
143
+
144
+ a. Install the library:
145
+ ```
146
+ pip install --upgrade huggingface_hub
147
+ ```
148
+ b. Creating a pull-request:
149
+
150
+ We recommend organizing the dataset in a folder and then uploading it to the huggingface hub. For example, to upload `lmo`:
151
+ ```
152
+ from huggingface_hub import HfApi, CommitOperationAdd
153
+
154
+ dataset_name = "lmo"
155
+ local_dir = "./datasets/lmo"
156
+
157
+ operations = []
158
+ for file in local_dir.glob("*"):
159
+ add_commit = CommitOperationAdd(
160
+ path_in_repo=f"/{dataset_name}",
161
+ path_or_fileobj=local_dir,
162
+ )
163
+ operations.append(add_commit)
164
+
165
+
166
+ api = HfApi()
167
+ MY_TOKEN = # get from https://huggingface.co/settings/tokens
168
+ api.create_commit(repo_id="bop-benchmark/datasets",
169
+ repo_type="dataset",
170
+ commit_message=f"adding {dataset_name} dataset",
171
+ token=MY_TOKEN,
172
+ operations=operations,
173
+ create_pr=True)
174
+
175
+ ```
176
+ If your dataset is large (> 500 GB), you can upload it in chunks by adding the `multi_commits=True, multi_commits_verbose=True,` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/package_reference/hf_api#huggingface_hub.HfApi.create_pull_request).
177
+
178
+ </details>
179
+
180
+ ## FAQ
181
+
182
+ #### 1. How to upload a large file > 50 GB?
183
+ Note that HuggingFace limits the size of each file to 50 GB. If your dataset is larger, you can split it into smaller files:
184
+ ```
185
+ zip -s 50g input.zip --out output.zip
186
+ ```
187
+ This command will split the `input.zip` into multiple files of 50GB size `output.zip`, `output.z01`, `output.z01`, ... You can then extract them using one of the following commands:
188
+ ```
189
+ # option 1: combine
190
+ zip -s0 output.zip --out input.zip
191
+
192
+ # option 2: using 7z to unzip directly
193
+ 7z x output.zip
194
+ ```
195
+ #### 2. How to increase download speed?
196
+ If you are running on a machine with high bandwidth, you can increase your download speed by adding the following environment variable:
197
+ ```
198
+ pip install huggingface_hub[hf_transfer]
199
+ export HF_HUB_ENABLE_HF_TRANSFER=1
200
+ ```
201
+
202
+ ## Publications
203
+ - [**BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects**](https://arxiv.org/pdf/2403.09799.pdf)
204
+ - T. Hodaň, M. Sundermeyer, Y. Labbé, V. N. Nguyen, G. Wang, E. Brachmann, B. Drost, V. Lepetit, C. Rother, J. Matas
205
+ - IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2024, Seattle
206
+ - [PDF](https://arxiv.org/pdf/2403.09799.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2023/slides/bop_challenge_2023_results.pdf), [VIDEO](https://www.youtube.com/watch?v=PcDszFANcDQ), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/hodan2023bop.bib)
207
+
208
+ - [**BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of Specific Rigid Objects**](https://arxiv.org/pdf/2302.13075.pdf)
209
+ - M. Sundermeyer, T. Hodaň, Y. Labbé, G. Wang, E. Brachmann, B. Drost, C. Rother, J. Matas
210
+ - IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2023, Vancouver
211
+ - [PDF](https://arxiv.org/pdf/2302.13075.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2022/slides/bop_challenge_2022_results.pdf), [VIDEO 1](https://vimeo.com/showcase/9946695/video/768457697), [VIDEO 2](https://vimeo.com/showcase/9946695/video/768458355), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/sundermeyer2022bop.bib)
212
+
213
+ - [**BOP Challenge 2020 on 6D Object Localization**](https://arxiv.org/pdf/2009.07378.pdf)
214
+ - T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother, J. Matas
215
+ - European Conference on Computer Vision Workshops (ECCVW) 2020, Glasgow
216
+ - [PDF](https://arxiv.org/pdf/2009.07378.pdf), [SLIDES](https://bop.felk.cvut.cz/media/bop_challenge_2020_results.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2020bop.bib)
217
+
218
+ - [**BOP: Benchmark for 6D Object Pose Estimation**](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf)
219
+ - T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. G. Buch, D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J. Matas, C. Rother
220
+ - European Conference on Computer Vision (ECCV) 2018, Munich
221
+ - [PDF](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf), [SLIDES](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_slides_eccv.pdf), [POSTER](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_poster.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.bib)
222
+
223
+
224
+ The online evaluation system has been developed by [T. Hodaň](http://www.hodan.xyz) and [A. Melenovský](https://www.linkedin.com/in/anton%C3%ADn-melenovsk%C3%BD-09907b151/).