Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +168 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
import time
|
5 |
+
|
6 |
+
from sklearn import datasets
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.tree import DecisionTreeClassifier
|
9 |
+
from sklearn import tree
|
10 |
+
from sklearn.metrics import accuracy_score
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="Decision Tree Visualizer",
|
15 |
+
page_icon=":chart_with_upwards_trend:",
|
16 |
+
layout="wide",
|
17 |
+
initial_sidebar_state="expanded")
|
18 |
+
|
19 |
+
# load dataset
|
20 |
+
iris=datasets.load_iris()
|
21 |
+
x = iris.data
|
22 |
+
y = iris.target
|
23 |
+
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2,random_state=42)
|
24 |
+
|
25 |
+
|
26 |
+
# constants
|
27 |
+
min_weight_fraction_leaf=0.0
|
28 |
+
max_features = None
|
29 |
+
max_leaf_nodes = None
|
30 |
+
min_impurity_decrease=0.0
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# Load initial graph
|
36 |
+
fig, ax = plt.subplots()
|
37 |
+
|
38 |
+
# Plot initial graph
|
39 |
+
scatter = ax.scatter(x.T[0], x.T[1], c=y, cmap='rainbow')
|
40 |
+
ax.set_xlabel(iris.feature_names[0], fontsize=10)
|
41 |
+
ax.set_ylabel(iris.feature_names[1],fontsize=10)
|
42 |
+
ax.set_title('Sepal Length vs Sepal Width', fontsize=15)
|
43 |
+
legend1 = ax.legend(*scatter.legend_elements(),
|
44 |
+
title="Classes",loc="upper right")
|
45 |
+
ax.add_artist(legend1)
|
46 |
+
ax.legend()
|
47 |
+
orig = st.pyplot(fig)
|
48 |
+
|
49 |
+
# sidebar elements
|
50 |
+
st.sidebar.header(':blue[_Decision Tree_] Algo Visualizer', divider='rainbow')
|
51 |
+
|
52 |
+
criterion = st.sidebar.selectbox("Criterion",
|
53 |
+
("gini", "entropy", "log_loss"),
|
54 |
+
help="""The function to measure the quality of a split.
|
55 |
+
Supported criteria are “gini” for the Gini impurity and “log_loss” and “entropy”
|
56 |
+
both for the Shannon information gain""")
|
57 |
+
max_depth = st.sidebar.number_input("Max Depth",
|
58 |
+
min_value=0,
|
59 |
+
max_value=30,
|
60 |
+
step=1,
|
61 |
+
value=0,
|
62 |
+
help="""The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure""")
|
63 |
+
if max_depth == 0:
|
64 |
+
max_depth=None
|
65 |
+
min_samples_split = st.sidebar.number_input("Min Sample Split",
|
66 |
+
min_value=0,
|
67 |
+
max_value=x_train.shape[0],
|
68 |
+
value=2,
|
69 |
+
help="""The minimum number of samples required to split an internal node.
|
70 |
+
If float, enter between 0 and 1""")
|
71 |
+
min_samples_leaf = st.sidebar.number_input("Min sample Leaf",
|
72 |
+
min_value=0,
|
73 |
+
max_value=x_train.shape[0],
|
74 |
+
value=1,
|
75 |
+
help="""The minimum number of samples required to be at a leaf node.
|
76 |
+
If float, enter between 0 and 1""")
|
77 |
+
random_state = st.sidebar.number_input("Random State",
|
78 |
+
min_value=0,
|
79 |
+
value=42)
|
80 |
+
|
81 |
+
# advance features
|
82 |
+
toggle = st.sidebar.toggle("Advance Features")
|
83 |
+
|
84 |
+
if toggle:
|
85 |
+
min_weight_fraction_leaf = st.sidebar.number_input("Min Weight Fraction Leaf",
|
86 |
+
min_value=0.0,
|
87 |
+
max_value=1.0,
|
88 |
+
value=0.0,
|
89 |
+
help="""The minimum weighted fraction of the sum total of weights
|
90 |
+
(of all the input samples) required to be at a leaf node. """)
|
91 |
+
max_features = st.sidebar.selectbox("Max Features",
|
92 |
+
(None,"sqrt", "log2","Custom"),
|
93 |
+
help="""The number of features to consider when looking for the best split""")
|
94 |
+
if max_features == "Custom":
|
95 |
+
max_features = st.sidebar.number_input("Enter Max Features",
|
96 |
+
value=None,
|
97 |
+
step=1)
|
98 |
+
|
99 |
+
max_leaf_nodes = st.sidebar.number_input("Max Leaf Nodes",
|
100 |
+
min_value=0,
|
101 |
+
help="""Grow a tree with max_leaf_nodes in best-first fashion. """)
|
102 |
+
if max_leaf_nodes==0:
|
103 |
+
max_leaf_nodes=None
|
104 |
+
min_impurity_decrease = st.sidebar.number_input("Min Impurity Decrase",
|
105 |
+
min_value=0.0,
|
106 |
+
help="""A node will be split if this split induces a decrease of the
|
107 |
+
impurity greater than or equal to this value.""")
|
108 |
+
train = st.sidebar.button("Train Model", type="primary")
|
109 |
+
if st.sidebar.button("Reset"):
|
110 |
+
st.experimental_rerun()
|
111 |
+
if train:
|
112 |
+
orig.empty()
|
113 |
+
|
114 |
+
msg = st.toast('Running', icon='🫸🏼')
|
115 |
+
# building model
|
116 |
+
clf = DecisionTreeClassifier(criterion=criterion,max_depth=max_depth,
|
117 |
+
min_samples_split=min_samples_split,
|
118 |
+
min_samples_leaf=min_samples_leaf,
|
119 |
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
120 |
+
max_features=max_features,
|
121 |
+
random_state=random_state,
|
122 |
+
max_leaf_nodes=max_leaf_nodes,
|
123 |
+
min_impurity_decrease=min_impurity_decrease)
|
124 |
+
clf.fit(x_train[:, :2], y_train)
|
125 |
+
x_pred = clf.predict(x_train[:,:2])
|
126 |
+
y_pred = clf.predict(x_test[:, :2])
|
127 |
+
st.subheader("Train Accuracy " + str(round(accuracy_score(y_train, x_pred), 2)) + ", "+ "Test Accuracy " + str(round(accuracy_score(y_test, y_pred), 2)))
|
128 |
+
st.write("Total Depth: " + str(clf.tree_.max_depth))
|
129 |
+
|
130 |
+
|
131 |
+
# # define ranges for meshgrid
|
132 |
+
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
133 |
+
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
134 |
+
|
135 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
|
136 |
+
np.arange(y_min, y_max, 0.01))
|
137 |
+
|
138 |
+
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
|
139 |
+
Z = Z.reshape(xx.shape)
|
140 |
+
|
141 |
+
# Plot the decision boundaries
|
142 |
+
plt.figure(figsize=(8, 6))
|
143 |
+
plt.contourf(xx, yy, Z, alpha=0.8)
|
144 |
+
plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=20)
|
145 |
+
plt.xlabel('Sepal length')
|
146 |
+
plt.ylabel('Sepal width')
|
147 |
+
plt.title('Decision Boundaries')
|
148 |
+
plt.tight_layout()
|
149 |
+
plt.savefig('decision_boundary_plot.png')
|
150 |
+
plt.close()
|
151 |
+
|
152 |
+
# Display decision boundary plot
|
153 |
+
st.image("decision_boundary_plot.png")
|
154 |
+
|
155 |
+
# Plot decision tree
|
156 |
+
plt.figure(figsize=(25, 20))
|
157 |
+
tree.plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
|
158 |
+
plt.xlim(plt.xlim()[0] * 2, plt.xlim()[1] * 2)
|
159 |
+
plt.ylim(plt.ylim()[0] * 2, plt.ylim()[1] * 2)
|
160 |
+
plt.savefig("decision_tree.png")
|
161 |
+
plt.close()
|
162 |
+
|
163 |
+
# Display decision tree plot
|
164 |
+
st.image("decision_tree.png")
|
165 |
+
|
166 |
+
msg.toast('Model run successfully!', icon='😎')
|
167 |
+
|
168 |
+
|
requirements.txt
ADDED
Binary file (188 Bytes). View file
|
|