File size: 1,057 Bytes
009e3d6 d0220f8 009e3d6 ba318fd d0220f8 64af1ab d0220f8 64af1ab 3160c4d 515b421 d0220f8 1c5943f c5e9b84 64ed549 d0220f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="bortle/astrophotography-object-classifier-alpha5")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
def process_image(image):
width = 1080
ratio = width / image.width
height = int(image.height * ratio)
resized_image = image.resize((width, height))
return resized_image
gr.Interface(
predict,
fn=process_image,
inputs=gr.Image(type="pil", label="Upload Astrophotography image"),
outputs=gr.Label(num_top_classes=5),
title="Astrophotography Object Classifier",
allow_flagging="manual",
examples=["examples/Andromeda.jpg", "examples/Heart.jpg", "examples/Pleiades.jpg", "examples/Rosette.jpg", "examples/Moon.jpg", "examples/GreatHercules.jpg", "examples/Leo-Triplet.jpg", "examples/Crab.jpg", "examples/North-America.jpg", "examples/Horsehead-Flame.jpg", "examples/Pinwheel.jpg", "examples/Saturn.jpg"],
cache_examples=True
).launch() |