|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
pipeline = pipeline(task="image-classification", model="bortle/astrophotography-object-classifier-alpha") |
|
|
|
def predict(image): |
|
predictions = pipeline(image) |
|
return {p["label"]: p["score"] for p in predictions} |
|
|
|
gr.Interface( |
|
predict, |
|
inputs=gr.Image(shape=(1080, None), type="pil", label="Upload Astrophotography image"), |
|
outputs=gr.Label(num_top_classes=5), |
|
title="Astrophotography Object Classifier", |
|
allow_flagging="manual", |
|
examples=["examples/Andromeda.jpg","examples/Heart.jpg","examples/Pleiades.jpg","examples/Rosette.jpg"], |
|
cache_examples=True |
|
).launch() |