ppicazo's picture
Update app.py
03d257e verified
import gradio as gr
from transformers import pipeline
from PIL import Image
# Load your model pipeline
model_pipeline = pipeline(
task="image-classification",
model="bortle/astrophotography-object-classifier-alpha5"
)
def predict(image):
# Resize the image to have width 1080 while keeping aspect ratio
width = 1080
ratio = width / image.width
height = int(image.height * ratio)
resized_image = image.resize((width, height))
# Perform predictions
predictions = model_pipeline(resized_image)
# Return predictions as a dictionary
return {p["label"]: p["score"] for p in predictions}
# Define the Gradio Interface
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload Astrophotography image"),
outputs=gr.Label(num_top_classes=5),
title="Astrophotography Object Classifier",
allow_flagging="manual",
examples=[
"examples/Andromeda.jpg", "examples/Heart.jpg", "examples/Pleiades.jpg",
"examples/Rosette.jpg", "examples/Moon.jpg", "examples/GreatHercules.jpg",
"examples/Leo-Triplet.jpg", "examples/Crab.jpg", "examples/North-America.jpg",
"examples/Horsehead-Flame.jpg", "examples/Pinwheel.jpg", "examples/Saturn.jpg"
],
cache_examples=True
).launch()