|
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FluxLoraLoaderMixin, |
|
FromSingleFileMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models.autoencoders import AutoencoderKL |
|
from diffusers.pipelines.flux.pipeline_flux_fill import ( |
|
calculate_shift, |
|
retrieve_latents, |
|
retrieve_timesteps, |
|
) |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils import logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from model.flux.transformer_flux import FluxTransformer2DModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class FluxTryOnPipeline( |
|
DiffusionPipeline, |
|
FluxLoraLoaderMixin, |
|
FromSingleFileMixin, |
|
TextualInversionLoaderMixin, |
|
): |
|
model_cpu_offload_seq = "transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
transformer: FluxTransformer2DModel, |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
vae=vae, |
|
scheduler=scheduler, |
|
transformer=transformer, |
|
) |
|
|
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
|
|
|
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor * 2, |
|
vae_latent_channels=self.vae.config.latent_channels, |
|
do_normalize=False, |
|
do_binarize=True, |
|
do_convert_grayscale=True, |
|
) |
|
self.default_sample_size = 128 |
|
|
|
self.transformer.remove_text_layers() |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, subfolder=None, **kwargs): |
|
transformer = FluxTransformer2DModel.from_pretrained(pretrained_model_name_or_path, subfolder="transformer") |
|
transformer.remove_text_layers() |
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") |
|
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") |
|
return FluxTryOnPipeline(vae, scheduler, transformer) |
|
|
|
def prepare_mask_latents( |
|
self, |
|
mask, |
|
masked_image, |
|
batch_size, |
|
num_channels_latents, |
|
num_images_per_prompt, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
): |
|
|
|
|
|
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (self.vae_scale_factor * 2)) |
|
|
|
|
|
if masked_image.shape[1] == num_channels_latents: |
|
masked_image_latents = masked_image |
|
else: |
|
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) |
|
|
|
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
|
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
if mask.shape[0] < batch_size: |
|
if not batch_size % mask.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) |
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) |
|
|
|
|
|
|
|
masked_image_latents = self._pack_latents( |
|
masked_image_latents, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
) |
|
|
|
|
|
mask = mask[:, 0, :, :] |
|
mask = mask.view( |
|
batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor |
|
) |
|
mask = mask.permute(0, 2, 4, 1, 3) |
|
mask = mask.reshape( |
|
batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width |
|
) |
|
|
|
|
|
|
|
mask = self._pack_latents( |
|
mask, |
|
batch_size, |
|
self.vae_scale_factor * self.vae_scale_factor, |
|
height, |
|
width, |
|
) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
return mask, masked_image_latents |
|
|
|
def check_inputs( |
|
self, |
|
height, |
|
width, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
image=None, |
|
mask_image=None, |
|
condition_image=None, |
|
masked_image_latents=None, |
|
): |
|
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: |
|
logger.warning( |
|
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
if image is not None and masked_image_latents is not None: |
|
raise ValueError( |
|
"Please provide either `image` or `masked_image_latents`, `masked_image_latents` should not be passed." |
|
) |
|
|
|
if image is not None and mask_image is None: |
|
raise ValueError("Please provide `mask_image` when passing `image`.") |
|
|
|
if condition_image is None: |
|
raise ValueError("Please provide `condition_image`.") |
|
|
|
@staticmethod |
|
|
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): |
|
latent_image_ids = torch.zeros(height, width, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids.reshape( |
|
latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@staticmethod |
|
|
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width): |
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) |
|
latents = latents.permute(0, 2, 4, 1, 3, 5) |
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) |
|
|
|
return latents |
|
|
|
@staticmethod |
|
|
|
def _unpack_latents(latents, height, width, vae_scale_factor): |
|
batch_size, num_patches, channels = latents.shape |
|
|
|
|
|
|
|
height = 2 * (int(height) // (vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (vae_scale_factor * 2)) |
|
|
|
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) |
|
latents = latents.permute(0, 3, 1, 4, 2, 5) |
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height, width) |
|
|
|
return latents |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
|
|
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (self.vae_scale_factor * 2)) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
|
|
if latents is not None: |
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) |
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) |
|
|
|
return latents, latent_image_ids |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def joint_attention_kwargs(self): |
|
return self._joint_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Optional[torch.FloatTensor] = None, |
|
condition_image: Optional[torch.FloatTensor] = None, |
|
mask_image: Optional[torch.FloatTensor] = None, |
|
masked_image_latents: Optional[torch.FloatTensor] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 30.0, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
height, |
|
width, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
image=image, |
|
mask_image=mask_image, |
|
condition_image=condition_image, |
|
masked_image_latents=masked_image_latents, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
batch_size = 1 |
|
device = self._execution_device |
|
dtype = self.transformer.dtype |
|
|
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width * 2, |
|
dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
if masked_image_latents is not None: |
|
masked_image_latents = masked_image_latents.to(latents.device) |
|
else: |
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
condition_image = self.image_processor.preprocess(condition_image, height=height, width=width) |
|
mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width) |
|
|
|
masked_image = image * (1 - mask_image) |
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
|
|
|
|
condition_image = condition_image.to(device=device, dtype=dtype) |
|
masked_image = torch.cat((masked_image, condition_image), dim=-1) |
|
mask_image = torch.cat((mask_image, torch.zeros_like(mask_image)), dim=-1) |
|
|
|
height, width = image.shape[-2:] |
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask_image, |
|
masked_image, |
|
batch_size, |
|
num_channels_latents, |
|
num_images_per_prompt, |
|
height, |
|
width * 2, |
|
dtype, |
|
device, |
|
generator, |
|
) |
|
masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
|
|
pooled_prompt_embeds = torch.zeros([latents.shape[0], 768], device=device, dtype=dtype) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=torch.cat((latents, masked_image_latents), dim=2), |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=None, |
|
txt_ids=None, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
if output_type == "latent": |
|
image = latents |
|
else: |
|
latents = self._unpack_latents(latents, height, width * 2, self.vae_scale_factor) |
|
latents = latents.split(latents.shape[-1] // 2, dim=-1)[0] |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|