Spaces:
Sleeping
Sleeping
File size: 4,812 Bytes
6bcba58 5103369 6bcba58 08d3dac 4482a0d 08d3dac c3a1556 6bcba58 6b02e11 0653671 6b02e11 08d3dac 6b02e11 454b0bf c3a1556 454b0bf 8861375 e17f0b6 6bcba58 923e263 2932ae3 6bcba58 2932ae3 6bcba58 08d3dac 6bcba58 e17f0b6 6bcba58 96ac3aa 6bcba58 c3a1556 6bcba58 c3a1556 6bcba58 c3a1556 6bcba58 c3a1556 2ad25d4 6bcba58 6b02e11 6bcba58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">🤖 BotBot Cabra 🐐 Llama 3 8b</h1>
<p>Conversa com o modelo <a href="https://huggingface.co/botbot-ai/CabraLlama3-8b"><b>BotBot Cabra Llama3 8b</b></a>.</p>
<p>🐐 Conheça os nossos outros <a href="https://huggingface.co/collections/botbot-ai/models-6604c2069ceef04f834ba99b3">modelos Cabra</a>.</p>
<p></p>
</div>
'''
LICENSE = """
<p/>
---
Esse modelo pode gerar inverdades, mentiras ou ofensas. Somente para teste e validação de modelos de linguagem. Proibido para uso comercial.
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://uploads-ssl.webflow.com/65f77c0240ae1c68f8192771/66299ba8957d9bb8fb5d1d12_image.png" style="width: 70%; max-width: 550px; height: auto; opacity: 0.6; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">BotBot Cabra</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Faça uma pergunta...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("botbot-ai/CabraLlama3-8b")
model = AutoModelForCausalLM.from_pretrained("botbot-ai/CabraLlama3-8b", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='BotBot Cabra Llama 3')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Paramentos", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.6,
label="Temperatura",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max novos tokens",
render=False ),
],
examples=[
['Como cirar uma base humana em marte, em 5 passos?'],
['Who is Elon Musk?'],
['Quem desenhou e criou Brasilia?'],
['Traduz o seguinte texto: "The quick brown fox jumps over the lazy dog."'],
['Me conta um pouco sobre o rio amazonas']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|