File size: 7,383 Bytes
bdc074b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d01d6a
 
 
bdc074b
6d01d6a
 
bdc074b
6d01d6a
bdc074b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d01d6a
 
 
 
bdc074b
 
 
 
 
 
 
 
 
 
6d01d6a
 
 
 
 
 
bdc074b
 
 
 
6d01d6a
bdc074b
 
6d01d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import logging
from typing import List, Optional, Union

import datasets
import evaluate
import numpy as np

logger = logging.getLogger(__name__)

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class patch_series(evaluate.Metric):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.matching_series_metric = evaluate.load("bowdbeg/matching_series")

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Value("int64"),
                    "references": datasets.Value("int64"),
                }
            ),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
        """"""
        all_kwargs = {"predictions": predictions, "references": references, **kwargs}
        if predictions is None and references is None:
            missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
            all_kwargs.update(missing_kwargs)
        else:
            missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
            if missing_inputs:
                raise ValueError(
                    f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
                )
        inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
        compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
        return self._compute(**inputs, **compute_kwargs)

    def _compute(
        self,
        predictions: Union[List, np.ndarray],
        references: Union[List, np.ndarray],
        patch_length: List[int] = [1],
        strides: Union[List[int], None] = None,
        **kwargs,
    ):
        """Compute the evaluation score for bowdbeg/matching_series for each patch and take mean."""
        if strides is None:
            strides = patch_length
        assert len(patch_length) == len(strides), "The patch_length and strides should have the same length."
        predictions = np.array(predictions)
        references = np.array(references)
        if not all(predictions.shape[1] % p == 0 for p in patch_length) and not all(
            references.shape[1] % p == 0 for p in patch_length
        ):
            raise ValueError("The patch_length should divide the length of the predictions and references.")
        if len(predictions.shape) != 3:
            raise ValueError("Predictions should have shape (batch_size, sequence_length, num_features)")
        if len(patch_length) == 0:
            raise ValueError("The patch_length should be a list of integers.")
        res_sum: Union[None, dict] = None
        orig_pred_shape = predictions.shape
        orig_ref_shape = references.shape
        for patch, stride in zip(patch_length, strides):
            # create patched predictions and references
            patched_predictions = self.get_patches(predictions, patch, stride, axis=1)
            patched_references = self.get_patches(references, patch, stride, axis=1)
            patched_predictions = patched_predictions.reshape(-1, patch, orig_pred_shape[2])
            patched_references = patched_references.reshape(-1, patch, orig_ref_shape[2])

            # compute the score for each patch
            res = self.matching_series_metric.compute(
                predictions=patched_predictions, references=patched_references, **kwargs
            )
            # sum the results
            if res_sum is None:
                res_sum = res
            else:
                assert isinstance(res_sum, dict)
                assert isinstance(res, dict)
                for key in res_sum:
                    if isinstance(res_sum[key], (list, np.ndarray)):
                        res_sum[key] = np.array(res_sum[key]) + np.array(res[key])
                    elif isinstance(res_sum[key], (float, int)):
                        res_sum[key] += res[key]
                    else:
                        logger.warning(f"Unsupported type for key {key}: {type(res_sum[key])}")
                        del res_sum[key]
        # take the mean of the results
        assert isinstance(res_sum, dict)
        for key in res_sum:
            if isinstance(res_sum[key], (list, np.ndarray)):
                res_sum[key] = np.array(res_sum[key]) / len(patch_length)
            else:
                res_sum[key] /= len(patch_length)

        return res_sum

    @staticmethod
    def get_patches(series: np.ndarray, patch_length: int, stride: int, axis=0):
        # create patched predictions and references
        o = np.lib.stride_tricks.sliding_window_view(series, window_shape=patch_length, axis=axis)
        o = o[::stride]
        return o