from ctransformers import AutoModelForCausalLM from fastapi import FastAPI from pydantic import BaseModel import logging llm = AutoModelForCausalLM.from_pretrained("zephyr-7b-beta.Q8_0.gguf", model_type='mistral', max_new_tokens = 1096, threads = 3, ) #Pydantic object class validation(BaseModel): prompt: str #Fast API app = FastAPI() @app.post("/bpandey23_llm") async def stream(item: validation): logging.basicConfig(format='%(process)d-%(levelname)s-%(message)s') payload_llm="This is the prompt by the user: " + item.prompt logging.info(payload_llm) #llm stuff starts now system_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' E_INST = "</s>" user, assistant = "<|user|>", "<|assistant|>" prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt}{E_INST}\n{assistant}\n" return llm(prompt)