File size: 3,496 Bytes
eafbf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
Utilities for input-output loading/saving.
"""

from typing import Any, List
import yaml
import pickle
import json
import pandas as pd


class PrettySafeLoader(yaml.SafeLoader):
    """Custom loader for reading YAML files"""
    def construct_python_tuple(self, node):
        return tuple(self.construct_sequence(node))


PrettySafeLoader.add_constructor(
    u'tag:yaml.org,2002:python/tuple',
    PrettySafeLoader.construct_python_tuple
)


def load_yml(path: str, loader_type: str = 'default'):
    """Read params from a yml file.

    Args:
        path (str): path to the .yml file
        loader_type (str, optional): type of loader used to load yml files. Defaults to 'default'.

    Returns:
        Any: object (typically dict) loaded from .yml file
    """
    assert loader_type in ['default', 'safe']

    loader = yaml.Loader if (loader_type == "default") else PrettySafeLoader

    with open(path, 'r') as f:
        data = yaml.load(f, Loader=loader)

    return data


def save_yml(data: dict, path: str):
    """Save params in the given yml file path.

    Args:
        data (dict): data object to save
        path (str): path to .yml file to be saved
    """
    with open(path, 'w') as f:
        yaml.dump(data, f, default_flow_style=False)


def load_pkl(path: str, encoding: str = "ascii"):
    """Loads a .pkl file.

    Args:
        path (str): path to the .pkl file
        encoding (str, optional): encoding to use for loading. Defaults to "ascii".

    Returns:
        Any: unpickled object
    """
    return pickle.load(open(path, "rb"), encoding=encoding)


def save_pkl(data: Any, path: str) -> None:
    """Saves given object into .pkl file

    Args:
        data (Any): object to be saved
        path (str): path to the location to be saved at
    """
    with open(path, 'wb') as f:
        pickle.dump(data, f)


def load_json(path: str) -> dict:
    """Helper to load json file"""
    with open(path, 'rb') as f:
        data = json.load(f)
    return data


def save_json(data: dict, path: str):
    """Helper to save `dict` as .json file."""
    with open(path, 'w') as f:
        json.dump(data, f)


def load_txt(path: str):
    """Loads lines of a .txt file.

    Args:
        path (str): path to the .txt file

    Returns:
        List: lines of .txt file
    """
    with open(path) as f:
        lines = f.read().splitlines()
    return lines


def save_txt(data: dict, path: str):
    """Writes data (lines) to a txt file.

    Args:
        data (dict): List of strings
        path (str): path to .txt file
    """
    assert isinstance(data, list)

    lines = "\n".join(data)
    with open(path, "w") as f:
        f.write(str(lines))


def read_spreadsheet(sheet_id, gid, url=None, drop_na=True, **kwargs):
    if url is None:
        BASE_URL = 'https://docs.google.com/spreadsheets/d/'
        url = BASE_URL + sheet_id + f'/export?gid={gid}&format=csv'
    df = pd.read_csv(url, **kwargs)
    
    if drop_na:
        # drop all rows which have atleast 1 NaN value
        df = df.dropna(axis=0)

    return df


def load_midi(file, rate=16000):
    import pretty_midi
    assert file.endswith('.mid')
    pm = pretty_midi.PrettyMIDI(file)
    y = pm.synthesize(fs=rate)
    return y, rate


def load_ptz(path):
    import gzip
    import torch
    with gzip.open(path, 'rb') as f:
        data = torch.load(f)
    return data


def save_video(frames, path, fps=30):
    import imageio
    imageio.mimwrite(path, frames, fps=fps)