Spaces:
Sleeping
Sleeping
File size: 14,289 Bytes
c5f65a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
"""Defines the audio model for pitch estimation."""
import torch
import torch.nn as nn
import einops
import math
import numpy as np
import einops
import pytorch_lightning as pl
import shared.utils as su
class TimeEncodingDiscreteSinusoidal(nn.Module):
def __init__(self, d, v=10000, rate=49, scale_factor=0.01):
"""
Args:
d (int): Dimension
rate (int): discretisation rate (frames per second)
this means that each [1/49.] of a second will be
encoded with a unique vector
"""
super().__init__()
self.d = d
self.rate = rate
self.v = v
self.scale_factor = scale_factor
def forward(self, t):
"""
Takes in timestamps t (seconds) and outputs vectors that represent these.
Args:
t (torch.tensor): time stamps in seconds, [B, N]
"""
B, N = t.shape
# Discretise time
i = (t * self.rate).to(int)
pe = torch.zeros(B, N, self.d).to(t.device)
div_term = torch.exp(
(torch.arange(0, self.d, 2, dtype=torch.float) * -(math.log(self.v) / self.d))
)
div_term = div_term.to(t.device)
pe[:, :, 0::2] = torch.sin(i[:, :, None].float() * div_term)
pe[:, :, 1::2] = torch.cos(i[:, :, None].float() * div_term)
pe = pe * self.scale_factor
return pe
class Wav2Vec2WithTimeEncoding(nn.Module):
def __init__(
self, model_name="facebook/wav2vec2-base-960h", use_time=True,
d=512, v=10000, rate=49, scale_factor=0.01, layer_norm=False,
):
super().__init__()
su.log.print_update(
f" [:::] Loading backbone Wav2Vec 2.0 ",
pos="left",
fillchar=".",
color="cyan",
)
# Load pre-trained Wav2Vec 2.0 model
from transformers import Wav2Vec2Model
self.net = Wav2Vec2Model.from_pretrained(model_name)
self.d = d
self.v = v
self.rate = rate
self.sr = 16000
self.use_time = use_time
if self.use_time:
self.time_encoding = TimeEncodingDiscreteSinusoidal(
d=d, v=v, rate=rate, scale_factor=scale_factor,
)
else:
print(" [:::] Not using time encoding.")
self.time_encoding = None
# Have a layer norm for the time encoding
if layer_norm:
self.layer_norm = nn.LayerNorm(d)
else:
self.layer_norm = nn.Identity()
def forward(self, x, t):
"""
Args:
x (torch.tensor): audio input, [B, NC, C, NS],
NC: n.o. clips, NS: n.o. samples
t (torch.tensor): time stamps in seconds, [B, NC, 2],
start and end times for each clip
"""
B, T, C, NS = x.shape
assert C == 1, "Require a single-channel input."
assert t.shape[1] == T, \
"Number of timestamps should match number of clips."
assert t.shape[0] == B, \
"Batch size should match."
assert t.shape[2] == 2, \
"Timestamps should have start and end times."
# # Compute number of frames
# NF = int((NS / self.sr) * self.rate)
# Process inputs
x = einops.rearrange(x, "B T 1 NS -> (B T) NS")
t = einops.rearrange(t, "B T L -> (B T) L")
# This forward is based on Huggingface's implementation of Wave2Vec2
# https://github.com/huggingface/transformers/blob/main/src/
# transformers/models/wav2vec2/modeling_wav2vec2.py
# Encode through the CNN
extract_features = self.net.feature_extractor(x)
extract_features = extract_features.transpose(1, 2)
if self.use_time:
# Process timestamps: get timestamps for each frame
# within each clip (fps=49)
NF = extract_features.shape[1]
t_dense = []
for i in range(B):
start, end = t[i]
t_dense.append(torch.linspace(start, end, NF))
t_dense = torch.stack(t_dense).to(extract_features.device)
# Add time encoding to the features
t_dense_enc = self.time_encoding(t_dense)
# Normalise time encoding to have the same scale as the features
extract_features = extract_features + t_dense_enc
else:
pass
# Apply layer norm
extract_features = self.layer_norm(extract_features)
# Project into the feature space
hidden_states, extract_features = self.net.feature_projection(
extract_features
)
# Pass through the transformer encoder
encoder_outputs = self.net.encoder(
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
z = encoder_outputs[0]
# z = self.backbone(x).last_hidden_state
z = einops.rearrange(z, "(B T) F D -> B T F D", B=B, T=T)
return z
def recursive_attr(module, attr):
if "." in attr:
m, a = attr.split(".", 1)
return recursive_attr(getattr(module, m), a)
return getattr(module, attr)
class WavelengthWithTime(pl.LightningModule):
def __init__(
self,
backbone,
feat_dim=768,
axial=True,
axial_bins=512,
radial=True,
radial_bins=512,
freeze_backbone=True,
train_backbone_modules=[10, 11],
prediction_head_hidden=[],
act="softmax",
criterion="kl_div",
cfg_opt=dict(name="Adam", args=dict(lr=1e-4)),
):
super().__init__()
su.log.print_update(
" [:::] Loading model WavelengthWithTime ",
color="cyan",
pos="left",
fillchar=".",
)
# By default, freeze the entire backbone
if freeze_backbone:
self.freeze(backbone)
# Unfreeze specific modules
train_backbone_modules = [
backbone.net.encoder.layers[int(m)] for m in train_backbone_modules
]
for module in train_backbone_modules:
self.unfreeze(module)
# Make the layer norm in backbone trainable
print("[>>>] Unfreezing layer norm in backbone")
for param in backbone.layer_norm.parameters():
param.requires_grad = True
su.misc.num_trainable_params(backbone)
self.backbone = backbone
self.feat_dim = feat_dim
# Add some intermediate layers before prediction heads
if len(prediction_head_hidden) > 0:
layers = []
in_dim = feat_dim
for out_dim in prediction_head_hidden:
layers.append(nn.Linear(in_dim, out_dim))
layers.append(nn.ReLU())
in_dim = out_dim
self.intermediate_layers = nn.Sequential(*layers)
else:
self.intermediate_layers = torch.nn.Identity()
out_dim = feat_dim
su.misc.num_trainable_params(self.intermediate_layers)
assert axial or radial, \
"At least one of axial or radial heads must be enabled."
# Define axial head
self.axial_head = None
if axial:
self.axial_head = nn.Linear(out_dim, axial_bins)
su.misc.num_trainable_params(self.axial_head)
# Define radial head
self.radial_head = None
if radial:
self.radial_head = nn.Linear(out_dim, radial_bins)
su.misc.num_trainable_params(self.radial_head)
self.act = torch.nn.Softmax(dim=-1) if act == "softmax" else torch.nn.Identity()
# Set criterion
self.define_criterion(criterion)
# Define optimization config
self.cfg_opt = cfg_opt
# Save hyperparameters
self.save_hyperparameters(ignore=["backbone"])
def freeze_backbone(self):
for param in self.backbone.parameters():
param.requires_grad = False
def define_criterion(self, criterion):
if criterion == "kl_div":
self.criterion = nn.KLDivLoss()
elif criterion == "ce":
self.criterion = nn.CrossEntropyLoss()
else:
raise NotImplementedError(f"Criterion {criterion} not implemented.")
def freeze(self, net):
for p in net.parameters():
p.requires_grad = False
def unfreeze(self, module):
module_name = type(module).__name__
print(f"[>>>] Unfreezing {module_name}")
for p in module.parameters():
p.requires_grad = True
def forward(self, x, t):
"""
Args:
x (torch.Tensor): [B, T, C, NS], T: n.o. clips
t (torch.Tensor): [B, T, 2], clip start and end times
"""
B, T, C, NS = x.shape
z = self.backbone.forward(x, t)
# assert C == 1, "Require a single-channel input."
# x = einops.rearrange(x, "B T 1 NS -> (B T) NS")
# z = self.backbone(x).last_hidden_state
# z = einops.rearrange(z, "(B T) F D -> B T F D", B=B, D=self.feat_dim)
# Intermediate layers
h = self.intermediate_layers(z)
# Prediction heads
y_pred = dict()
if self.axial_head is not None:
axial = self.act(self.axial_head(h))
y_pred["axial"] = axial
if self.radial_head is not None:
radial = self.act(self.radial_head(h))
y_pred["radial"] = radial
return y_pred
def compute_loss(self, y_pred: dict, y_true: dict):
loss = dict()
total_loss = 0.
for key in y_pred:
yt = y_true[key]
yt = einops.rearrange(yt, "b t d f -> b t f d")
yp = y_pred[key]
if isinstance(self.criterion, nn.KLDivLoss):
# Need to pass log to the loss function if it is KLDivLoss
yp = yp.log()
loss[key] = self.criterion(yp, yt)
elif isinstance(self.criterion, nn.CrossEntropyLoss):
yp = einops.rearrange(yp, "b t f d -> (b t f) d")
yt = einops.rearrange(yt, "b t f d -> (b t f) d")
loss[key] = self.criterion(yp, yt)
else:
raise NotImplementedError(f"Criterion {self.criterion} not implemented.")
# For now, using hardcoded loss weights of 1/K where K is number of losses
total_loss += loss[key] / len(y_pred)
loss["total"] = total_loss
return loss
# Fill in the rest of the class definition here
def step(self, batch, mode, log=True):
x = batch["audio_clips"]
t = batch["clips"]
y_true = {**batch["targets"], **batch["metadata"]}
y_pred = self.forward(x, t)
losses = self.compute_loss(y_pred, y_true)
loss = losses["total"]
if log:
self.log(f"batch/{mode}/loss_net", loss, prog_bar=True, sync_dist=True)
return loss
def training_step(self, batch, batch_idx):
return self.step(batch, "train")
def validation_step(self, batch, batch_idx):
return self.step(batch, "valid")
def configure_optimizers(self):
function = getattr(torch.optim, self.cfg_opt["name"])
optimizer = function(self.parameters(), **self.cfg_opt["args"])
return optimizer
if __name__ == "__main__":
import os
# Test backbone
backbone = Wav2Vec2WithTimeEncoding()
su.misc.num_params(backbone)
# Test on a real audio clip
path = "./media_assets/pouring_water_in_a_glass.wav"
import torchaudio
waveform, sr = torchaudio.load(path)
waveform = torchaudio.functional.resample(waveform, sr, 16000)
sr = 16000
waveform = waveform.mean(dim=0, keepdim=True)
# Forward pass an entire audio
from transformers import Wav2Vec2Processor
model_name = "facebook/wav2vec2-base-960h"
processor = Wav2Vec2Processor.from_pretrained(model_name)
s, e = 8, 22
x = processor(
waveform[:, int(s*sr):int(e*sr)], sampling_rate=16000, return_tensors="pt",
).input_values.unsqueeze(0)
duration = waveform.shape[-1] / sr
t = torch.tensor([[s, e]]).unsqueeze(0)
z = backbone(x, t)
# Let's look at the tsne
z_flat = einops.rearrange(z, "B T F D -> (B T F) D")
import matplotlib.pyplot as plt
# Add serif
plt.rcParams["font.family"] = "serif"
su.visualize.show_temporal_tsne(z_flat.detach().numpy(), show=False)
plt.savefig("./media_assets/tsne.png")
plt.close()
# Test model
cfg_model = {
"name": "WavelengthWithTime",
"args": {
"axial": True,
"axial_bins": 64,
"radial": True,
"radial_bins": 64,
"freeze_backbone": True,
"train_backbone_modules": [6, 7, 8, 9, 10, 11],
"act": "softmax",
"criterion": "kl_div",
}
}
model = eval(cfg_model["name"])(backbone=backbone, **cfg_model["args"])
su.misc.num_trainable_params(model)
# Load pre-trained checkpoint
ckpt_dir = "/work/piyush/pretrained_checkpoints/SoundOfWater"
ckpt_path = os.path.join(
ckpt_dir,
"dsr9mf13_ep100_step12423_real_finetuned_with_cosupervision.pth",
)
assert os.path.exists(ckpt_path), \
f"Checkpoint not found at {ckpt_path}."
print("Loading checkpoint from: ", ckpt_path)
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt)
print(msg)
# Check forward pass
x_random = torch.randn(2, 1, 1, 16000)
t_random = torch.tensor([[[0, 1]], [[2, 3]]])
y_pred = model(x_random, t_random)
print("Input: ", x_random.shape)
for key in y_pred:
print(key, y_pred[key].shape)
# Plot features with the trained backbone and save as tsne_trained.png
z = model.backbone(x, t)
z_flat = einops.rearrange(z, "B T F D -> (B T F) D")
su.visualize.show_temporal_tsne(z_flat.detach().numpy(), show=False)
plt.savefig("./media_assets/tsne_trained.png")
plt.close() |