File size: 14,289 Bytes
c5f65a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
"""Defines the audio model for pitch estimation."""
import torch
import torch.nn as nn
import einops

import math
import numpy as np
import einops
import pytorch_lightning as pl

import shared.utils as su


class TimeEncodingDiscreteSinusoidal(nn.Module):
    def __init__(self, d, v=10000, rate=49, scale_factor=0.01):
        """
        Args:
            d (int): Dimension
            rate (int): discretisation rate (frames per second)
                this means that each [1/49.] of a second will be
                encoded with a unique vector
        """
        super().__init__()
        self.d = d
        self.rate = rate
        self.v = v
        self.scale_factor = scale_factor

    def forward(self, t):
        """
        Takes in timestamps t (seconds) and outputs vectors that represent these.

        Args:
            t (torch.tensor): time stamps in seconds, [B, N]
        """
        B, N = t.shape

        # Discretise time
        i = (t * self.rate).to(int)

        pe = torch.zeros(B, N, self.d).to(t.device)
        div_term = torch.exp(
            (torch.arange(0, self.d, 2, dtype=torch.float) * -(math.log(self.v) / self.d))
        )
        div_term = div_term.to(t.device)
        pe[:, :, 0::2] = torch.sin(i[:, :, None].float() * div_term)
        pe[:, :, 1::2] = torch.cos(i[:, :, None].float() * div_term)

        pe = pe * self.scale_factor

        return pe


class Wav2Vec2WithTimeEncoding(nn.Module):
    def __init__(
            self, model_name="facebook/wav2vec2-base-960h", use_time=True,
            d=512, v=10000, rate=49, scale_factor=0.01, layer_norm=False,
        ):
        super().__init__()

        su.log.print_update(
            f" [:::] Loading backbone Wav2Vec 2.0 ",
            pos="left",
            fillchar=".",
            color="cyan",
        )

        # Load pre-trained Wav2Vec 2.0 model
        from transformers import Wav2Vec2Model
        self.net = Wav2Vec2Model.from_pretrained(model_name)

        self.d = d
        self.v = v
        self.rate = rate
        self.sr = 16000
        self.use_time = use_time

        if self.use_time:
            self.time_encoding = TimeEncodingDiscreteSinusoidal(
                d=d, v=v, rate=rate, scale_factor=scale_factor,
            )
        else:
            print(" [:::] Not using time encoding.")
            self.time_encoding = None

        # Have a layer norm for the time encoding
        if layer_norm:
            self.layer_norm = nn.LayerNorm(d)
        else:
            self.layer_norm = nn.Identity()

    def forward(self, x, t):
        """
        Args:
            x (torch.tensor): audio input, [B, NC, C, NS],
                NC: n.o. clips, NS: n.o. samples
            t (torch.tensor): time stamps in seconds, [B, NC, 2],
                start and end times for each clip
        """
        B, T, C, NS = x.shape
        assert C == 1, "Require a single-channel input."
        assert t.shape[1] == T, \
            "Number of timestamps should match number of clips."
        assert t.shape[0] == B, \
            "Batch size should match."
        assert t.shape[2] == 2, \
            "Timestamps should have start and end times."

        # # Compute number of frames
        # NF = int((NS / self.sr) * self.rate)

        # Process inputs
        x = einops.rearrange(x, "B T 1 NS -> (B T) NS")
        t = einops.rearrange(t, "B T L -> (B T) L")

        # This forward is based on Huggingface's implementation of Wave2Vec2
        # https://github.com/huggingface/transformers/blob/main/src/
        # transformers/models/wav2vec2/modeling_wav2vec2.py

        # Encode through the CNN
        extract_features = self.net.feature_extractor(x)
        extract_features = extract_features.transpose(1, 2)

        if self.use_time:
            # Process timestamps: get timestamps for each frame
            # within each clip (fps=49)
            NF = extract_features.shape[1]
            t_dense = []
            for i in range(B):
                start, end = t[i]
                t_dense.append(torch.linspace(start, end, NF))
            t_dense = torch.stack(t_dense).to(extract_features.device)

            # Add time encoding to the features
            t_dense_enc = self.time_encoding(t_dense)

            # Normalise time encoding to have the same scale as the features
            extract_features = extract_features + t_dense_enc
        else:
            pass

        # Apply layer norm
        extract_features = self.layer_norm(extract_features)

        # Project into the feature space
        hidden_states, extract_features = self.net.feature_projection(
            extract_features
        )

        # Pass through the transformer encoder
        encoder_outputs = self.net.encoder(
            hidden_states,
            attention_mask=None,
            output_attentions=False, 
            output_hidden_states=False, 
            return_dict=True,
        )
        z = encoder_outputs[0]

        # z = self.backbone(x).last_hidden_state
        z = einops.rearrange(z, "(B T) F D -> B T F D", B=B, T=T)

        return z


def recursive_attr(module, attr):
    if "." in attr:
        m, a = attr.split(".", 1)
        return recursive_attr(getattr(module, m), a)
    return getattr(module, attr)


class WavelengthWithTime(pl.LightningModule):
    def __init__(
            self,
            backbone,
            feat_dim=768,
            axial=True,
            axial_bins=512,
            radial=True,
            radial_bins=512,
            freeze_backbone=True,
            train_backbone_modules=[10, 11], 
            prediction_head_hidden=[],
            act="softmax",
            criterion="kl_div",
            cfg_opt=dict(name="Adam", args=dict(lr=1e-4)),
        ):
        super().__init__()
        su.log.print_update(
            " [:::] Loading model WavelengthWithTime ",
            color="cyan",
            pos="left",
            fillchar=".",
        )

        # By default, freeze the entire backbone
        if freeze_backbone:
            self.freeze(backbone)
        
        # Unfreeze specific modules
        train_backbone_modules = [
            backbone.net.encoder.layers[int(m)] for m in train_backbone_modules
        ]
        for module in train_backbone_modules:
            self.unfreeze(module)
        
        # Make the layer norm in backbone trainable
        print("[>>>] Unfreezing layer norm in backbone")
        for param in backbone.layer_norm.parameters():
            param.requires_grad = True
        su.misc.num_trainable_params(backbone)

        self.backbone = backbone
        self.feat_dim = feat_dim

        # Add some intermediate layers before prediction heads
        if len(prediction_head_hidden) > 0:
            layers = []
            in_dim = feat_dim
            for out_dim in prediction_head_hidden:
                layers.append(nn.Linear(in_dim, out_dim))
                layers.append(nn.ReLU())
                in_dim = out_dim
            self.intermediate_layers = nn.Sequential(*layers)
        else:
            self.intermediate_layers = torch.nn.Identity()
            out_dim = feat_dim
        su.misc.num_trainable_params(self.intermediate_layers)

        assert axial or radial, \
            "At least one of axial or radial heads must be enabled."

        # Define axial head
        self.axial_head = None
        if axial:
            self.axial_head = nn.Linear(out_dim, axial_bins)
            su.misc.num_trainable_params(self.axial_head)
        
        # Define radial head
        self.radial_head = None
        if radial:
            self.radial_head = nn.Linear(out_dim, radial_bins)
            su.misc.num_trainable_params(self.radial_head)

        self.act = torch.nn.Softmax(dim=-1) if act == "softmax" else torch.nn.Identity()

        # Set criterion
        self.define_criterion(criterion)

        # Define optimization config
        self.cfg_opt = cfg_opt

        # Save hyperparameters
        self.save_hyperparameters(ignore=["backbone"])

    def freeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad = False

    def define_criterion(self, criterion):
        if criterion == "kl_div":
            self.criterion = nn.KLDivLoss()
        elif criterion == "ce":
            self.criterion = nn.CrossEntropyLoss()
        else:
            raise NotImplementedError(f"Criterion {criterion} not implemented.")

    def freeze(self, net):
        for p in net.parameters():
            p.requires_grad = False

    def unfreeze(self, module):
        module_name = type(module).__name__
        print(f"[>>>] Unfreezing {module_name}")
        for p in module.parameters():
            p.requires_grad = True

    def forward(self, x, t):
        """
        Args:
            x (torch.Tensor): [B, T, C, NS], T: n.o. clips
            t (torch.Tensor): [B, T, 2], clip start and end times
        """
        B, T, C, NS = x.shape
        z = self.backbone.forward(x, t)

        # assert C == 1, "Require a single-channel input."
        # x = einops.rearrange(x, "B T 1 NS -> (B T) NS")
        
        # z = self.backbone(x).last_hidden_state
        # z = einops.rearrange(z, "(B T) F D -> B T F D", B=B, D=self.feat_dim)
        
        # Intermediate layers
        h = self.intermediate_layers(z)

        # Prediction heads
        y_pred = dict()
        if self.axial_head is not None:
            axial = self.act(self.axial_head(h))
            y_pred["axial"] = axial
        if self.radial_head is not None:
            radial = self.act(self.radial_head(h))
            y_pred["radial"] = radial
        return y_pred
    
    def compute_loss(self, y_pred: dict, y_true: dict):
        loss = dict()
        total_loss = 0.
        for key in y_pred:
            yt = y_true[key]
            yt = einops.rearrange(yt, "b t d f -> b t f d")
            yp = y_pred[key]
            if isinstance(self.criterion, nn.KLDivLoss):
                # Need to pass log to the loss function if it is KLDivLoss
                yp = yp.log()
                loss[key] = self.criterion(yp, yt)
            elif isinstance(self.criterion, nn.CrossEntropyLoss):
                yp = einops.rearrange(yp, "b t f d -> (b t f) d")
                yt = einops.rearrange(yt, "b t f d -> (b t f) d")
                loss[key] = self.criterion(yp, yt)
            else:
                raise NotImplementedError(f"Criterion {self.criterion} not implemented.")
            # For now, using hardcoded loss weights of 1/K where K is number of losses
            total_loss += loss[key] / len(y_pred)
        loss["total"] = total_loss
        return loss

    # Fill in the rest of the class definition here
    def step(self, batch, mode, log=True):
        x = batch["audio_clips"]
        t = batch["clips"]
        y_true = {**batch["targets"], **batch["metadata"]}
        y_pred = self.forward(x, t)
        losses = self.compute_loss(y_pred, y_true)
        loss = losses["total"]

        if log:
            self.log(f"batch/{mode}/loss_net", loss, prog_bar=True, sync_dist=True)

        return loss

    def training_step(self, batch, batch_idx):
        return self.step(batch, "train")

    def validation_step(self, batch, batch_idx):
        return self.step(batch, "valid")

    def configure_optimizers(self):
        function = getattr(torch.optim, self.cfg_opt["name"])
        optimizer = function(self.parameters(), **self.cfg_opt["args"])
        return optimizer


if __name__ == "__main__":
    import os

    # Test backbone
    backbone = Wav2Vec2WithTimeEncoding()
    su.misc.num_params(backbone)

    # Test on a real audio clip
    path = "./media_assets/pouring_water_in_a_glass.wav"
    import torchaudio
    waveform, sr = torchaudio.load(path)
    waveform = torchaudio.functional.resample(waveform, sr, 16000)
    sr = 16000
    waveform = waveform.mean(dim=0, keepdim=True)

    # Forward pass an entire audio
    from transformers import Wav2Vec2Processor
    model_name = "facebook/wav2vec2-base-960h"
    processor = Wav2Vec2Processor.from_pretrained(model_name)

    s, e = 8, 22
    x = processor(
        waveform[:, int(s*sr):int(e*sr)], sampling_rate=16000, return_tensors="pt",
    ).input_values.unsqueeze(0)
    duration = waveform.shape[-1] / sr
    t = torch.tensor([[s, e]]).unsqueeze(0)
    z = backbone(x, t)

    # Let's look at the tsne
    z_flat = einops.rearrange(z, "B T F D -> (B T F) D")
    import matplotlib.pyplot as plt
    # Add serif
    plt.rcParams["font.family"] = "serif"

    su.visualize.show_temporal_tsne(z_flat.detach().numpy(), show=False)
    plt.savefig("./media_assets/tsne.png")
    plt.close()


    # Test model
    cfg_model = {
        "name": "WavelengthWithTime",
        "args": {
            "axial": True,
            "axial_bins": 64,
            "radial": True,
            "radial_bins": 64,
            "freeze_backbone": True,
            "train_backbone_modules": [6, 7, 8, 9, 10, 11],
            "act": "softmax",
            "criterion": "kl_div",
        }
    }
    model = eval(cfg_model["name"])(backbone=backbone, **cfg_model["args"])
    su.misc.num_trainable_params(model)

    # Load pre-trained checkpoint
    ckpt_dir = "/work/piyush/pretrained_checkpoints/SoundOfWater"
    ckpt_path = os.path.join(
        ckpt_dir, 
        "dsr9mf13_ep100_step12423_real_finetuned_with_cosupervision.pth",
    )
    assert os.path.exists(ckpt_path), \
        f"Checkpoint not found at {ckpt_path}."
    print("Loading checkpoint from: ", ckpt_path)
    ckpt = torch.load(ckpt_path, map_location="cpu")
    msg = model.load_state_dict(ckpt)
    print(msg)

    # Check forward pass
    x_random = torch.randn(2, 1, 1, 16000)
    t_random = torch.tensor([[[0, 1]], [[2, 3]]])
    y_pred = model(x_random, t_random)
    print("Input: ", x_random.shape)
    for key in y_pred:
        print(key, y_pred[key].shape)
    

    # Plot features with the trained backbone and save as tsne_trained.png
    z = model.backbone(x, t)
    z_flat = einops.rearrange(z, "B T F D -> (B T F) D")
    su.visualize.show_temporal_tsne(z_flat.detach().numpy(), show=False)
    plt.savefig("./media_assets/tsne_trained.png")
    plt.close()