bpiyush commited on
Commit
46e5961
·
1 Parent(s): ab3e235

Pushes the app file

Browse files
Files changed (1) hide show
  1. app.py +118 -0
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Demo to show clips from AudioSet with Doppler effect."""
2
+ import os
3
+ from os.path import join, exists, dirname, abspath, basename
4
+ import json
5
+ from glob import glob
6
+
7
+ from tqdm import tqdm
8
+ import numpy as np
9
+ import pandas as pd
10
+ import streamlit as st
11
+ import matplotlib.pyplot as plt
12
+ # from moviepy.video.io.VideoFileClip import VideoFileClip
13
+
14
+ import warnings
15
+ warnings.simplefilter(action='ignore')
16
+
17
+ curr_filepath = abspath(__file__)
18
+ repo_path = dirname(dirname(curr_filepath))
19
+
20
+
21
+ def make_grid(cols,rows):
22
+ grid = [0]*cols
23
+ for i in range(cols):
24
+ with st.container():
25
+ grid[i] = st.columns(rows)
26
+ return grid
27
+
28
+
29
+ # Filter out samples with (possible) Doppler effect
30
+ doppler_classes = [
31
+ 'airplane',
32
+ 'ambulance siren',
33
+ # 'race car, auto racing', # Typically captured from within the car
34
+ 'subway, metro, underground',
35
+ 'car passing by',
36
+ # 'motorboat, speedboat acceleration', # Typically captured from within the boat
37
+ 'railroad car, train wagon',
38
+ # 'helicopter',
39
+ # 'driving snowmobile', # Typically captured from within the snowmobile
40
+ 'airplane flyby',
41
+ ]
42
+
43
+ if __name__ == "__main__":
44
+
45
+ # Streamlit app code
46
+ st.set_page_config(layout="wide")
47
+ st.title("Clips from VGGSound (possibly with Doppler effect) 🎬")
48
+
49
+ # load data
50
+ if "df" not in st.session_state:
51
+ csv_path = "./data/vggsound.csv"
52
+ df = pd.read_csv(csv_path)
53
+ df.columns = ["video_id", "start_seconds", "label", "split"]
54
+ df["end_seconds"] = df["start_seconds"] + 10.
55
+ df = df[df["label"].isin(doppler_classes)]
56
+ st.session_state.df = df
57
+ else:
58
+ df = st.session_state.df
59
+
60
+
61
+ st.markdown(f"**Total number of relevant clips**: {len(df)}", unsafe_allow_html=True)
62
+ # st.markdown("---")
63
+
64
+ # # plot histogram
65
+ # arr = np.random.normal(1, 1, size=100)
66
+ # fig, ax = plt.subplots(1, 1, figsize=(1, 1))
67
+ # ax.hist(arr, bins=20)
68
+ # st.pyplot(fig)
69
+
70
+ # plot st bar chart
71
+ st.markdown("**Distribution of classes**")
72
+ count_df = df["label"].value_counts().reset_index()
73
+ # sort by count
74
+ count_df = count_df.sort_values(by="label", ascending=False)
75
+ print(count_df)
76
+ st.bar_chart(count_df, width=300, height=0)
77
+
78
+ reload_button = st.button("Reload")
79
+ NUM = 9
80
+ indices = np.random.randint(0, len(st.session_state.df), NUM)
81
+ if reload_button:
82
+ indices = np.random.randint(0, len(st.session_state.df), NUM)
83
+
84
+ videoids = []
85
+ segments = []
86
+ labels = []
87
+ for index in indices:
88
+ sample = st.session_state.df.iloc[index].to_dict()
89
+ video_id = sample["video_id"]
90
+ videoids.append(video_id)
91
+ start_time = sample["start_seconds"]
92
+ end_time = sample["end_seconds"]
93
+ segments.append((start_time, end_time))
94
+ labels.append(sample["label"])
95
+
96
+ # st.markdown(f"Showing Foley segments from a clip in movie: **{video_id}**")
97
+ # Create a grid of videos
98
+ grid = make_grid(3, 3)
99
+ per_video_width = 360
100
+ per_video_height = 240
101
+
102
+ # Add videos to the grid
103
+ for idx in range(0, min(len(segments), 9)):
104
+ i, j = idx // 3, idx % 3
105
+
106
+ start, end = segments[idx]
107
+ duration = end - start
108
+ video_id = videoids[idx]
109
+
110
+ grid[i][j].caption(f"Segment duration: {duration}")
111
+ url = f"https://www.youtube.com/embed/{video_id}?start={int(start)}&end={int(end)}"
112
+ html_code = f"""
113
+ <iframe height="{per_video_height}" width="{per_video_width}" src="{url}" frameborder="0" allowfullscreen></iframe>
114
+ """
115
+ grid[i][j].markdown(html_code, unsafe_allow_html=True)
116
+ grid[i][j].caption(f"{labels[idx]}")
117
+
118
+