Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
def scrape_jobs(link):
|
7 |
+
# Send a GET request to the carrier website
|
8 |
+
response = requests.get(link)
|
9 |
+
|
10 |
+
# Parse the HTML content using BeautifulSoup
|
11 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
12 |
+
|
13 |
+
# Find all the job listings on the page
|
14 |
+
job_elements = soup.find_all('div', class_='job-listing')
|
15 |
+
|
16 |
+
jobs = []
|
17 |
+
for job_element in job_elements:
|
18 |
+
# Extract relevant information from each job listing
|
19 |
+
job_title = job_element.find('h2', class_='job-title').text.strip()
|
20 |
+
job_location = job_element.find('span', class_='job-location').text.strip()
|
21 |
+
job_description = job_element.find('div', class_='job-description').text.strip()
|
22 |
+
|
23 |
+
# Store the job information in a dictionary
|
24 |
+
job = {
|
25 |
+
'Title': job_title,
|
26 |
+
'Location': job_location,
|
27 |
+
'Description': job_description
|
28 |
+
}
|
29 |
+
|
30 |
+
jobs.append(job)
|
31 |
+
|
32 |
+
return jobs
|
33 |
+
|
34 |
+
def export_to_excel(jobs, filename):
|
35 |
+
# Create a DataFrame from the job data
|
36 |
+
df = pd.DataFrame(jobs)
|
37 |
+
|
38 |
+
# Save the DataFrame to an Excel file
|
39 |
+
df.to_excel(filename, index=False)
|
40 |
+
|
41 |
+
def job_listing_scraper(link):
|
42 |
+
job_listings = scrape_jobs(link)
|
43 |
+
output_file = "job_listings.xlsx"
|
44 |
+
export_to_excel(job_listings, output_file)
|
45 |
+
return f"Job listings scraped successfully! Saved to {output_file}"
|
46 |
+
|
47 |
+
# Define the Gradio interface
|
48 |
+
interface = gr.Interface(
|
49 |
+
fn=job_listing_scraper,
|
50 |
+
inputs="text",
|
51 |
+
outputs="text",
|
52 |
+
title="Job Listing Scraper",
|
53 |
+
description="Enter the link to the carrier website and click 'Submit' to scrape job listings and save them to an Excel file.",
|
54 |
+
examples=[["https://example.com/carrier"]],
|
55 |
+
)
|
56 |
+
|
57 |
+
# Run the Gradio interface
|
58 |
+
interface.launch()
|