|
"""A gradio app. that runs locally (analytics=False and share=False) about sentiment analysis on tweets.""" |
|
|
|
import gradio as gr |
|
from requests import head |
|
from transformer_vectorizer import TransformerVectorizer |
|
from concrete.ml.deployment import FHEModelClient |
|
import numpy |
|
import os |
|
from pathlib import Path |
|
import requests |
|
import json |
|
import base64 |
|
import subprocess |
|
import shutil |
|
import time |
|
|
|
subprocess.Popen(["uvicorn", "server:app"]) |
|
|
|
|
|
time.sleep(5) |
|
|
|
|
|
|
|
ENCRYPTED_DATA_BROWSER_LIMIT = 500 |
|
N_USER_KEY_STORED = 20 |
|
|
|
print("Loading the transformer model...") |
|
|
|
|
|
transformer_vectorizer = TransformerVectorizer() |
|
|
|
def clean_tmp_directory(): |
|
|
|
|
|
path_sub_directories = sorted([f for f in Path(".fhe_keys/").iterdir() if f.is_dir()], key=os.path.getmtime) |
|
|
|
user_ids = [] |
|
if len(path_sub_directories) > N_USER_KEY_STORED: |
|
n_files_to_delete = len(path_sub_directories) - N_USER_KEY_STORED |
|
for p in path_sub_directories[:n_files_to_delete]: |
|
user_ids.append(p.name) |
|
shutil.rmtree(p) |
|
|
|
list_files_tmp = Path("tmp/").iterdir() |
|
|
|
for file in list_files_tmp: |
|
for user_id in user_ids: |
|
if file.name.endswith(f"{user_id}.npy"): |
|
file.unlink() |
|
|
|
|
|
def keygen(): |
|
|
|
clean_tmp_directory() |
|
|
|
print("Initializing FHEModelClient...") |
|
|
|
|
|
user_id = numpy.random.randint(0, 2**32) |
|
fhe_api = FHEModelClient("sentiment_fhe_model/deployment", f".fhe_keys/{user_id}") |
|
fhe_api.load() |
|
|
|
|
|
|
|
fhe_api.generate_private_and_evaluation_keys(force=True) |
|
evaluation_key = fhe_api.get_serialized_evaluation_keys() |
|
size_evaluation_key = len(evaluation_key) |
|
|
|
|
|
|
|
numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key) |
|
|
|
return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], size_evaluation_key, user_id] |
|
|
|
|
|
def encode_quantize_encrypt(text, user_id): |
|
if not user_id: |
|
raise gr.Error("You need to generate FHE keys first.") |
|
|
|
fhe_api = FHEModelClient("sentiment_fhe_model/deployment", f".fhe_keys/{user_id}") |
|
fhe_api.load() |
|
encodings = transformer_vectorizer.transform([text]) |
|
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8) |
|
encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings) |
|
|
|
|
|
|
|
numpy.save(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy", encrypted_quantized_encoding) |
|
|
|
|
|
text_size = len(text.encode()) |
|
encodings_size = len(encodings.tobytes()) |
|
quantized_encoding_size = len(quantized_encodings.tobytes()) |
|
encrypted_quantized_encoding_size = len(encrypted_quantized_encoding) |
|
encrypted_quantized_encoding_shorten = list(encrypted_quantized_encoding)[:ENCRYPTED_DATA_BROWSER_LIMIT] |
|
encrypted_quantized_encoding_shorten_hex = ''.join(f'{i:02x}' for i in encrypted_quantized_encoding_shorten) |
|
return ( |
|
encodings[0], |
|
quantized_encodings[0], |
|
encrypted_quantized_encoding_shorten_hex, |
|
text_size, |
|
encodings_size, |
|
quantized_encoding_size, |
|
encrypted_quantized_encoding_size, |
|
) |
|
|
|
|
|
def run_fhe(user_id): |
|
encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy") |
|
if not user_id: |
|
raise gr.Error("You need to generate FHE keys first.") |
|
if not encoded_data_path.is_file(): |
|
raise gr.Error("No encrypted data was found. Encrypt the data before trying to predict.") |
|
|
|
|
|
encrypted_quantized_encoding = numpy.load(encoded_data_path) |
|
|
|
|
|
evaluation_key = numpy.load(f"tmp/tmp_evaluation_key_{user_id}.npy") |
|
|
|
|
|
encrypted_quantized_encoding = base64.b64encode(encrypted_quantized_encoding).decode() |
|
encoded_evaluation_key = base64.b64encode(evaluation_key).decode() |
|
|
|
query = {} |
|
query["evaluation_key"] = encoded_evaluation_key |
|
query["encrypted_encoding"] = encrypted_quantized_encoding |
|
headers = {"Content-type": "application/json"} |
|
response = requests.post( |
|
"http://localhost:8000/predict_sentiment", data=json.dumps(query), headers=headers |
|
) |
|
encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"]) |
|
|
|
|
|
|
|
numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction) |
|
encrypted_prediction_shorten = list(encrypted_prediction)[:ENCRYPTED_DATA_BROWSER_LIMIT] |
|
encrypted_prediction_shorten_hex = ''.join(f'{i:02x}' for i in encrypted_prediction_shorten) |
|
return encrypted_prediction_shorten_hex |
|
|
|
|
|
def decrypt_prediction(user_id): |
|
encoded_data_path = Path(f"tmp/tmp_encrypted_prediction_{user_id}.npy") |
|
if not user_id: |
|
raise gr.Error("You need to generate FHE keys first.") |
|
if not encoded_data_path.is_file(): |
|
raise gr.Error("No encrypted prediction was found. Run the prediction over the encrypted data first.") |
|
|
|
|
|
encrypted_prediction = numpy.load(encoded_data_path).tobytes() |
|
|
|
fhe_api = FHEModelClient("sentiment_fhe_model/deployment", f".fhe_keys/{user_id}") |
|
fhe_api.load() |
|
|
|
|
|
fhe_api.generate_private_and_evaluation_keys(force=False) |
|
|
|
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction) |
|
return { |
|
"negative": predictions[0][0], |
|
"neutral": predictions[0][1], |
|
"positive": predictions[0][2], |
|
} |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
|
|
print("Starting the demo...") |
|
with demo: |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png"> |
|
</p> |
|
|
|
<h2 align="center">Machine Learning, Natural Language Processing and Fully Homomorphic Encryption to do Sentiment Analysis on Encrypted data.</h2> |
|
|
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a> |
|
— |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a> |
|
— |
|
<a href="https://community.zama.ai"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community support forum</a> |
|
— |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a> |
|
</p> |
|
|
|
<p align="center"> |
|
<img src="https://user-images.githubusercontent.com/7602572/202997494-4ce17b99-9739-4b2c-9f99-e93cca661361.png"> |
|
</p> |
|
|
|
<p align="center"> |
|
<img src="https://user-images.githubusercontent.com/7602572/202998030-5883d817-7b16-406a-8052-b5a0ffe5ec9b.png"> |
|
</p> |
|
""" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
</p> |
|
<p align="center"> |
|
</p> |
|
""" |
|
) |
|
|
|
gr.Markdown("## Notes") |
|
gr.Markdown( |
|
""" |
|
- The private key is used to encrypt and decrypt the data and shall never be shared. |
|
- The evaluation key is a public key that the server needs to process encrypted data. |
|
""" |
|
) |
|
|
|
gr.Markdown("# Step 1: Generate the keys") |
|
|
|
b_gen_key_and_install = gr.Button("Generate the keys and send public part to server") |
|
|
|
evaluation_key = gr.Textbox( |
|
label="Evaluation key (truncated):", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
|
|
user_id = gr.Textbox( |
|
label="", |
|
max_lines=4, |
|
interactive=False, |
|
visible=False |
|
) |
|
|
|
size_evaluation_key = gr.Number( |
|
label="Size of the evalution key (in bytes):", value=0, interactive=False |
|
) |
|
|
|
gr.Markdown("# Step 2: Provide a message") |
|
gr.Markdown("## Client side") |
|
gr.Markdown( |
|
"Enter a sensitive text message you received and would like to do sentiment analysis on (ideas: the last text message of your boss.... or lover)." |
|
) |
|
text = gr.Textbox(label="Enter a message:", value="I really like your work recently") |
|
|
|
gr.Markdown("# Step 3: Encode the message with the private key") |
|
b_encode_quantize_text = gr.Button( |
|
"Encode, quantize and encrypt the text with transformer vectorizer, and send to server" |
|
) |
|
size_text = gr.Number(label="Size of the text (in bytes):", value="0", interactive=False) |
|
|
|
with gr.Row(): |
|
encoding = gr.Textbox( |
|
label="Transformer representation:", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
quantized_encoding = gr.Textbox( |
|
label="Quantized transformer representation:", max_lines=4, interactive=False |
|
) |
|
encrypted_quantized_encoding = gr.Textbox( |
|
label="Encrypted quantized transformer representation (truncated):", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
with gr.Row(): |
|
size_encoding = gr.Number(label="Size (in bytes):", value=0, interactive=False) |
|
size_quantized_encoding = gr.Number(label="Size (in bytes):", value=0, interactive=False) |
|
size_encrypted_quantized_encoding = gr.Number( |
|
label="Size (in bytes):", |
|
value=0, |
|
interactive=False, |
|
) |
|
|
|
gr.Markdown("# Step 4: Run the FHE evaluation") |
|
gr.Markdown("## Server side") |
|
gr.Markdown( |
|
"The encrypted value is received by the server. Thanks to the evaluation key and to FHE, the server can compute the (encrypted) prediction directly over encrypted values. Once the computation is finished, the server returns the encrypted prediction to the client." |
|
) |
|
|
|
b_run_fhe = gr.Button("Run FHE execution there") |
|
encrypted_prediction = gr.Textbox( |
|
label="Encrypted prediction (truncated):", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
|
|
gr.Markdown("# Step 5: Decrypt the sentiment") |
|
gr.Markdown("## Client side") |
|
gr.Markdown( |
|
"The encrypted sentiment is sent back to client, who can finally decrypt it with its private key. Only the client is aware of the original tweet and the prediction." |
|
) |
|
b_decrypt_prediction = gr.Button("Decrypt prediction") |
|
|
|
labels_sentiment = gr.Label(label="Sentiment:") |
|
|
|
|
|
b_gen_key_and_install.click(keygen, inputs=[], outputs=[evaluation_key, size_evaluation_key, user_id]) |
|
|
|
|
|
b_encode_quantize_text.click( |
|
encode_quantize_encrypt, |
|
inputs=[text, user_id], |
|
outputs=[ |
|
encoding, |
|
quantized_encoding, |
|
encrypted_quantized_encoding, |
|
size_text, |
|
size_encoding, |
|
size_quantized_encoding, |
|
size_encrypted_quantized_encoding, |
|
], |
|
) |
|
|
|
|
|
b_run_fhe.click(run_fhe, inputs=[user_id], outputs=[encrypted_prediction]) |
|
|
|
|
|
b_decrypt_prediction.click(decrypt_prediction, inputs=[user_id], outputs=[labels_sentiment]) |
|
gr.Markdown( |
|
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). Try it yourself and don't forget to star on Github ⭐." |
|
) |
|
demo.launch(share=False) |
|
|