brajshukl commited on
Commit
0f7f6c8
1 Parent(s): 46f1484

Upload 5 files

Browse files
Car_Price_Predictor.ipynb ADDED
@@ -0,0 +1,1982 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "authorship_tag": "ABX9TyPmt2lmbu+FwSqN/2ioK1mu"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ }
16
+ },
17
+ "cells": [
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": null,
21
+ "metadata": {
22
+ "id": "I6tnizR9KmGN"
23
+ },
24
+ "outputs": [],
25
+ "source": [
26
+ "import pandas as pd\n",
27
+ "import numpy as np\n"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "source": [
33
+ "car = pd.read_csv('https://raw.githubusercontent.com/rajtilakls2510/car_price_predictor/master/quikr_car.csv')\n",
34
+ "car.head()"
35
+ ],
36
+ "metadata": {
37
+ "colab": {
38
+ "base_uri": "https://localhost:8080/",
39
+ "height": 206
40
+ },
41
+ "id": "_QB98RY-L_DI",
42
+ "outputId": "85adff85-d29f-46d3-9b5c-c721a0dcc7f8"
43
+ },
44
+ "execution_count": null,
45
+ "outputs": [
46
+ {
47
+ "output_type": "execute_result",
48
+ "data": {
49
+ "text/plain": [
50
+ " name company year Price \\\n",
51
+ "0 Hyundai Santro Xing XO eRLX Euro III Hyundai 2007 80,000 \n",
52
+ "1 Mahindra Jeep CL550 MDI Mahindra 2006 4,25,000 \n",
53
+ "2 Maruti Suzuki Alto 800 Vxi Maruti 2018 Ask For Price \n",
54
+ "3 Hyundai Grand i10 Magna 1.2 Kappa VTVT Hyundai 2014 3,25,000 \n",
55
+ "4 Ford EcoSport Titanium 1.5L TDCi Ford 2014 5,75,000 \n",
56
+ "\n",
57
+ " kms_driven fuel_type \n",
58
+ "0 45,000 kms Petrol \n",
59
+ "1 40 kms Diesel \n",
60
+ "2 22,000 kms Petrol \n",
61
+ "3 28,000 kms Petrol \n",
62
+ "4 36,000 kms Diesel "
63
+ ],
64
+ "text/html": [
65
+ "\n",
66
+ " <div id=\"df-940caad2-31d8-4e4a-afe4-711d22c64a75\">\n",
67
+ " <div class=\"colab-df-container\">\n",
68
+ " <div>\n",
69
+ "<style scoped>\n",
70
+ " .dataframe tbody tr th:only-of-type {\n",
71
+ " vertical-align: middle;\n",
72
+ " }\n",
73
+ "\n",
74
+ " .dataframe tbody tr th {\n",
75
+ " vertical-align: top;\n",
76
+ " }\n",
77
+ "\n",
78
+ " .dataframe thead th {\n",
79
+ " text-align: right;\n",
80
+ " }\n",
81
+ "</style>\n",
82
+ "<table border=\"1\" class=\"dataframe\">\n",
83
+ " <thead>\n",
84
+ " <tr style=\"text-align: right;\">\n",
85
+ " <th></th>\n",
86
+ " <th>name</th>\n",
87
+ " <th>company</th>\n",
88
+ " <th>year</th>\n",
89
+ " <th>Price</th>\n",
90
+ " <th>kms_driven</th>\n",
91
+ " <th>fuel_type</th>\n",
92
+ " </tr>\n",
93
+ " </thead>\n",
94
+ " <tbody>\n",
95
+ " <tr>\n",
96
+ " <th>0</th>\n",
97
+ " <td>Hyundai Santro Xing XO eRLX Euro III</td>\n",
98
+ " <td>Hyundai</td>\n",
99
+ " <td>2007</td>\n",
100
+ " <td>80,000</td>\n",
101
+ " <td>45,000 kms</td>\n",
102
+ " <td>Petrol</td>\n",
103
+ " </tr>\n",
104
+ " <tr>\n",
105
+ " <th>1</th>\n",
106
+ " <td>Mahindra Jeep CL550 MDI</td>\n",
107
+ " <td>Mahindra</td>\n",
108
+ " <td>2006</td>\n",
109
+ " <td>4,25,000</td>\n",
110
+ " <td>40 kms</td>\n",
111
+ " <td>Diesel</td>\n",
112
+ " </tr>\n",
113
+ " <tr>\n",
114
+ " <th>2</th>\n",
115
+ " <td>Maruti Suzuki Alto 800 Vxi</td>\n",
116
+ " <td>Maruti</td>\n",
117
+ " <td>2018</td>\n",
118
+ " <td>Ask For Price</td>\n",
119
+ " <td>22,000 kms</td>\n",
120
+ " <td>Petrol</td>\n",
121
+ " </tr>\n",
122
+ " <tr>\n",
123
+ " <th>3</th>\n",
124
+ " <td>Hyundai Grand i10 Magna 1.2 Kappa VTVT</td>\n",
125
+ " <td>Hyundai</td>\n",
126
+ " <td>2014</td>\n",
127
+ " <td>3,25,000</td>\n",
128
+ " <td>28,000 kms</td>\n",
129
+ " <td>Petrol</td>\n",
130
+ " </tr>\n",
131
+ " <tr>\n",
132
+ " <th>4</th>\n",
133
+ " <td>Ford EcoSport Titanium 1.5L TDCi</td>\n",
134
+ " <td>Ford</td>\n",
135
+ " <td>2014</td>\n",
136
+ " <td>5,75,000</td>\n",
137
+ " <td>36,000 kms</td>\n",
138
+ " <td>Diesel</td>\n",
139
+ " </tr>\n",
140
+ " </tbody>\n",
141
+ "</table>\n",
142
+ "</div>\n",
143
+ " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-940caad2-31d8-4e4a-afe4-711d22c64a75')\"\n",
144
+ " title=\"Convert this dataframe to an interactive table.\"\n",
145
+ " style=\"display:none;\">\n",
146
+ " \n",
147
+ " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
148
+ " width=\"24px\">\n",
149
+ " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
150
+ " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
151
+ " </svg>\n",
152
+ " </button>\n",
153
+ " \n",
154
+ " <style>\n",
155
+ " .colab-df-container {\n",
156
+ " display:flex;\n",
157
+ " flex-wrap:wrap;\n",
158
+ " gap: 12px;\n",
159
+ " }\n",
160
+ "\n",
161
+ " .colab-df-convert {\n",
162
+ " background-color: #E8F0FE;\n",
163
+ " border: none;\n",
164
+ " border-radius: 50%;\n",
165
+ " cursor: pointer;\n",
166
+ " display: none;\n",
167
+ " fill: #1967D2;\n",
168
+ " height: 32px;\n",
169
+ " padding: 0 0 0 0;\n",
170
+ " width: 32px;\n",
171
+ " }\n",
172
+ "\n",
173
+ " .colab-df-convert:hover {\n",
174
+ " background-color: #E2EBFA;\n",
175
+ " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
176
+ " fill: #174EA6;\n",
177
+ " }\n",
178
+ "\n",
179
+ " [theme=dark] .colab-df-convert {\n",
180
+ " background-color: #3B4455;\n",
181
+ " fill: #D2E3FC;\n",
182
+ " }\n",
183
+ "\n",
184
+ " [theme=dark] .colab-df-convert:hover {\n",
185
+ " background-color: #434B5C;\n",
186
+ " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
187
+ " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
188
+ " fill: #FFFFFF;\n",
189
+ " }\n",
190
+ " </style>\n",
191
+ "\n",
192
+ " <script>\n",
193
+ " const buttonEl =\n",
194
+ " document.querySelector('#df-940caad2-31d8-4e4a-afe4-711d22c64a75 button.colab-df-convert');\n",
195
+ " buttonEl.style.display =\n",
196
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
197
+ "\n",
198
+ " async function convertToInteractive(key) {\n",
199
+ " const element = document.querySelector('#df-940caad2-31d8-4e4a-afe4-711d22c64a75');\n",
200
+ " const dataTable =\n",
201
+ " await google.colab.kernel.invokeFunction('convertToInteractive',\n",
202
+ " [key], {});\n",
203
+ " if (!dataTable) return;\n",
204
+ "\n",
205
+ " const docLinkHtml = 'Like what you see? Visit the ' +\n",
206
+ " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
207
+ " + ' to learn more about interactive tables.';\n",
208
+ " element.innerHTML = '';\n",
209
+ " dataTable['output_type'] = 'display_data';\n",
210
+ " await google.colab.output.renderOutput(dataTable, element);\n",
211
+ " const docLink = document.createElement('div');\n",
212
+ " docLink.innerHTML = docLinkHtml;\n",
213
+ " element.appendChild(docLink);\n",
214
+ " }\n",
215
+ " </script>\n",
216
+ " </div>\n",
217
+ " </div>\n",
218
+ " "
219
+ ]
220
+ },
221
+ "metadata": {},
222
+ "execution_count": 2
223
+ }
224
+ ]
225
+ },
226
+ {
227
+ "cell_type": "code",
228
+ "source": [
229
+ "car.shape"
230
+ ],
231
+ "metadata": {
232
+ "colab": {
233
+ "base_uri": "https://localhost:8080/"
234
+ },
235
+ "id": "Wwy0Ve_wNG9M",
236
+ "outputId": "43958f8c-46a1-4274-9c6b-7fb0f4e9c1d3"
237
+ },
238
+ "execution_count": null,
239
+ "outputs": [
240
+ {
241
+ "output_type": "execute_result",
242
+ "data": {
243
+ "text/plain": [
244
+ "(892, 6)"
245
+ ]
246
+ },
247
+ "metadata": {},
248
+ "execution_count": 3
249
+ }
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "source": [
255
+ "car.info()"
256
+ ],
257
+ "metadata": {
258
+ "colab": {
259
+ "base_uri": "https://localhost:8080/"
260
+ },
261
+ "id": "Xh6mrkM0NLeU",
262
+ "outputId": "e2b7a481-1583-46aa-e547-7da1f3d6ae82"
263
+ },
264
+ "execution_count": null,
265
+ "outputs": [
266
+ {
267
+ "output_type": "stream",
268
+ "name": "stdout",
269
+ "text": [
270
+ "<class 'pandas.core.frame.DataFrame'>\n",
271
+ "RangeIndex: 892 entries, 0 to 891\n",
272
+ "Data columns (total 6 columns):\n",
273
+ " # Column Non-Null Count Dtype \n",
274
+ "--- ------ -------------- ----- \n",
275
+ " 0 name 892 non-null object\n",
276
+ " 1 company 892 non-null object\n",
277
+ " 2 year 892 non-null object\n",
278
+ " 3 Price 892 non-null object\n",
279
+ " 4 kms_driven 840 non-null object\n",
280
+ " 5 fuel_type 837 non-null object\n",
281
+ "dtypes: object(6)\n",
282
+ "memory usage: 41.9+ KB\n"
283
+ ]
284
+ }
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "code",
289
+ "source": [
290
+ "car['year'].unique()"
291
+ ],
292
+ "metadata": {
293
+ "colab": {
294
+ "base_uri": "https://localhost:8080/"
295
+ },
296
+ "id": "1U_wrin0NO0F",
297
+ "outputId": "7ec4499e-c071-4ae0-9ea6-7a854185852e"
298
+ },
299
+ "execution_count": null,
300
+ "outputs": [
301
+ {
302
+ "output_type": "execute_result",
303
+ "data": {
304
+ "text/plain": [
305
+ "array(['2007', '2006', '2018', '2014', '2015', '2012', '2013', '2016',\n",
306
+ " '2010', '2017', '2008', '2011', '2019', '2009', '2005', '2000',\n",
307
+ " '...', '150k', 'TOUR', '2003', 'r 15', '2004', 'Zest', '/-Rs',\n",
308
+ " 'sale', '1995', 'ara)', '2002', 'SELL', '2001', 'tion', 'odel',\n",
309
+ " '2 bs', 'arry', 'Eon', 'o...', 'ture', 'emi', 'car', 'able', 'no.',\n",
310
+ " 'd...', 'SALE', 'digo', 'sell', 'd Ex', 'n...', 'e...', 'D...',\n",
311
+ " ', Ac', 'go .', 'k...', 'o c4', 'zire', 'cent', 'Sumo', 'cab',\n",
312
+ " 't xe', 'EV2', 'r...', 'zest'], dtype=object)"
313
+ ]
314
+ },
315
+ "metadata": {},
316
+ "execution_count": 5
317
+ }
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "markdown",
322
+ "source": [
323
+ "In year column has alphbet values (Non-year value)"
324
+ ],
325
+ "metadata": {
326
+ "id": "y93Rrz_YNhKo"
327
+ }
328
+ },
329
+ {
330
+ "cell_type": "code",
331
+ "source": [
332
+ "car['Price'].unique()"
333
+ ],
334
+ "metadata": {
335
+ "colab": {
336
+ "base_uri": "https://localhost:8080/"
337
+ },
338
+ "id": "H_n8jcMMNbfk",
339
+ "outputId": "10cd6ade-1ba5-4998-d3ef-b00c00e4cc39"
340
+ },
341
+ "execution_count": null,
342
+ "outputs": [
343
+ {
344
+ "output_type": "execute_result",
345
+ "data": {
346
+ "text/plain": [
347
+ "array(['80,000', '4,25,000', 'Ask For Price', '3,25,000', '5,75,000',\n",
348
+ " '1,75,000', '1,90,000', '8,30,000', '2,50,000', '1,82,000',\n",
349
+ " '3,15,000', '4,15,000', '3,20,000', '10,00,000', '5,00,000',\n",
350
+ " '3,50,000', '1,60,000', '3,10,000', '75,000', '1,00,000',\n",
351
+ " '2,90,000', '95,000', '1,80,000', '3,85,000', '1,05,000',\n",
352
+ " '6,50,000', '6,89,999', '4,48,000', '5,49,000', '5,01,000',\n",
353
+ " '4,89,999', '2,80,000', '3,49,999', '2,84,999', '3,45,000',\n",
354
+ " '4,99,999', '2,35,000', '2,49,999', '14,75,000', '3,95,000',\n",
355
+ " '2,20,000', '1,70,000', '85,000', '2,00,000', '5,70,000',\n",
356
+ " '1,10,000', '4,48,999', '18,91,111', '1,59,500', '3,44,999',\n",
357
+ " '4,49,999', '8,65,000', '6,99,000', '3,75,000', '2,24,999',\n",
358
+ " '12,00,000', '1,95,000', '3,51,000', '2,40,000', '90,000',\n",
359
+ " '1,55,000', '6,00,000', '1,89,500', '2,10,000', '3,90,000',\n",
360
+ " '1,35,000', '16,00,000', '7,01,000', '2,65,000', '5,25,000',\n",
361
+ " '3,72,000', '6,35,000', '5,50,000', '4,85,000', '3,29,500',\n",
362
+ " '2,51,111', '5,69,999', '69,999', '2,99,999', '3,99,999',\n",
363
+ " '4,50,000', '2,70,000', '1,58,400', '1,79,000', '1,25,000',\n",
364
+ " '2,99,000', '1,50,000', '2,75,000', '2,85,000', '3,40,000',\n",
365
+ " '70,000', '2,89,999', '8,49,999', '7,49,999', '2,74,999',\n",
366
+ " '9,84,999', '5,99,999', '2,44,999', '4,74,999', '2,45,000',\n",
367
+ " '1,69,500', '3,70,000', '1,68,000', '1,45,000', '98,500',\n",
368
+ " '2,09,000', '1,85,000', '9,00,000', '6,99,999', '1,99,999',\n",
369
+ " '5,44,999', '1,99,000', '5,40,000', '49,000', '7,00,000', '55,000',\n",
370
+ " '8,95,000', '3,55,000', '5,65,000', '3,65,000', '40,000',\n",
371
+ " '4,00,000', '3,30,000', '5,80,000', '3,79,000', '2,19,000',\n",
372
+ " '5,19,000', '7,30,000', '20,00,000', '21,00,000', '14,00,000',\n",
373
+ " '3,11,000', '8,55,000', '5,35,000', '1,78,000', '3,00,000',\n",
374
+ " '2,55,000', '5,49,999', '3,80,000', '57,000', '4,10,000',\n",
375
+ " '2,25,000', '1,20,000', '59,000', '5,99,000', '6,75,000', '72,500',\n",
376
+ " '6,10,000', '2,30,000', '5,20,000', '5,24,999', '4,24,999',\n",
377
+ " '6,44,999', '5,84,999', '7,99,999', '4,44,999', '6,49,999',\n",
378
+ " '9,44,999', '5,74,999', '3,74,999', '1,30,000', '4,01,000',\n",
379
+ " '13,50,000', '1,74,999', '2,39,999', '99,999', '3,24,999',\n",
380
+ " '10,74,999', '11,30,000', '1,49,000', '7,70,000', '30,000',\n",
381
+ " '3,35,000', '3,99,000', '65,000', '1,69,999', '1,65,000',\n",
382
+ " '5,60,000', '9,50,000', '7,15,000', '45,000', '9,40,000',\n",
383
+ " '1,55,555', '15,00,000', '4,95,000', '8,00,000', '12,99,000',\n",
384
+ " '5,30,000', '14,99,000', '32,000', '4,05,000', '7,60,000',\n",
385
+ " '7,50,000', '4,19,000', '1,40,000', '15,40,000', '1,23,000',\n",
386
+ " '4,98,000', '4,80,000', '4,88,000', '15,25,000', '5,48,900',\n",
387
+ " '7,25,000', '99,000', '52,000', '28,00,000', '4,99,000',\n",
388
+ " '3,81,000', '2,78,000', '6,90,000', '2,60,000', '90,001',\n",
389
+ " '1,15,000', '15,99,000', '1,59,000', '51,999', '2,15,000',\n",
390
+ " '35,000', '11,50,000', '2,69,000', '60,000', '4,30,000',\n",
391
+ " '85,00,003', '4,01,919', '4,90,000', '4,24,000', '2,05,000',\n",
392
+ " '5,49,900', '3,71,500', '4,35,000', '1,89,700', '3,89,700',\n",
393
+ " '3,60,000', '2,95,000', '1,14,990', '10,65,000', '4,70,000',\n",
394
+ " '48,000', '1,88,000', '4,65,000', '1,79,999', '21,90,000',\n",
395
+ " '23,90,000', '10,75,000', '4,75,000', '10,25,000', '6,15,000',\n",
396
+ " '19,00,000', '14,90,000', '15,10,000', '18,50,000', '7,90,000',\n",
397
+ " '17,25,000', '12,25,000', '68,000', '9,70,000', '31,00,000',\n",
398
+ " '8,99,000', '88,000', '53,000', '5,68,500', '71,000', '5,90,000',\n",
399
+ " '7,95,000', '42,000', '1,89,000', '1,62,000', '35,999',\n",
400
+ " '29,00,000', '39,999', '50,500', '5,10,000', '8,60,000',\n",
401
+ " '5,00,001'], dtype=object)"
402
+ ]
403
+ },
404
+ "metadata": {},
405
+ "execution_count": 6
406
+ }
407
+ ]
408
+ },
409
+ {
410
+ "cell_type": "markdown",
411
+ "source": [
412
+ "Price column has 'Ask for price' string"
413
+ ],
414
+ "metadata": {
415
+ "id": "VYVx8iFOOG5K"
416
+ }
417
+ },
418
+ {
419
+ "cell_type": "code",
420
+ "source": [
421
+ "car['kms_driven'].unique()"
422
+ ],
423
+ "metadata": {
424
+ "colab": {
425
+ "base_uri": "https://localhost:8080/"
426
+ },
427
+ "id": "UUVyLDZ2ODAc",
428
+ "outputId": "82a219be-00b2-46b3-c279-324ecca81c06"
429
+ },
430
+ "execution_count": null,
431
+ "outputs": [
432
+ {
433
+ "output_type": "execute_result",
434
+ "data": {
435
+ "text/plain": [
436
+ "array(['45,000 kms', '40 kms', '22,000 kms', '28,000 kms', '36,000 kms',\n",
437
+ " '59,000 kms', '41,000 kms', '25,000 kms', '24,530 kms',\n",
438
+ " '60,000 kms', '30,000 kms', '32,000 kms', '48,660 kms',\n",
439
+ " '4,000 kms', '16,934 kms', '43,000 kms', '35,550 kms',\n",
440
+ " '39,522 kms', '39,000 kms', '55,000 kms', '72,000 kms',\n",
441
+ " '15,975 kms', '70,000 kms', '23,452 kms', '35,522 kms',\n",
442
+ " '48,508 kms', '15,487 kms', '82,000 kms', '20,000 kms',\n",
443
+ " '68,000 kms', '38,000 kms', '27,000 kms', '33,000 kms',\n",
444
+ " '46,000 kms', '16,000 kms', '47,000 kms', '35,000 kms',\n",
445
+ " '30,874 kms', '15,000 kms', '29,685 kms', '1,30,000 kms',\n",
446
+ " '19,000 kms', nan, '54,000 kms', '13,000 kms', '38,200 kms',\n",
447
+ " '50,000 kms', '13,500 kms', '3,600 kms', '45,863 kms',\n",
448
+ " '60,500 kms', '12,500 kms', '18,000 kms', '13,349 kms',\n",
449
+ " '29,000 kms', '44,000 kms', '42,000 kms', '14,000 kms',\n",
450
+ " '49,000 kms', '36,200 kms', '51,000 kms', '1,04,000 kms',\n",
451
+ " '33,333 kms', '33,600 kms', '5,600 kms', '7,500 kms', '26,000 kms',\n",
452
+ " '24,330 kms', '65,480 kms', '28,028 kms', '2,00,000 kms',\n",
453
+ " '99,000 kms', '2,800 kms', '21,000 kms', '11,000 kms',\n",
454
+ " '66,000 kms', '3,000 kms', '7,000 kms', '38,500 kms', '37,200 kms',\n",
455
+ " '43,200 kms', '24,800 kms', '45,872 kms', '40,000 kms',\n",
456
+ " '11,400 kms', '97,200 kms', '52,000 kms', '31,000 kms',\n",
457
+ " '1,75,430 kms', '37,000 kms', '65,000 kms', '3,350 kms',\n",
458
+ " '75,000 kms', '62,000 kms', '73,000 kms', '2,200 kms',\n",
459
+ " '54,870 kms', '34,580 kms', '97,000 kms', '60 kms', '80,200 kms',\n",
460
+ " '3,200 kms', '0,000 kms', '5,000 kms', '588 kms', '71,200 kms',\n",
461
+ " '1,75,400 kms', '9,300 kms', '56,758 kms', '10,000 kms',\n",
462
+ " '56,450 kms', '56,000 kms', '32,700 kms', '9,000 kms', '73 kms',\n",
463
+ " '1,60,000 kms', '84,000 kms', '58,559 kms', '57,000 kms',\n",
464
+ " '1,70,000 kms', '80,000 kms', '6,821 kms', '23,000 kms',\n",
465
+ " '34,000 kms', '1,800 kms', '4,00,000 kms', '48,000 kms',\n",
466
+ " '90,000 kms', '12,000 kms', '69,900 kms', '1,66,000 kms',\n",
467
+ " '122 kms', '0 kms', '24,000 kms', '36,469 kms', '7,800 kms',\n",
468
+ " '24,695 kms', '15,141 kms', '59,910 kms', '1,00,000 kms',\n",
469
+ " '4,500 kms', '1,29,000 kms', '300 kms', '1,31,000 kms',\n",
470
+ " '1,11,111 kms', '59,466 kms', '25,500 kms', '44,005 kms',\n",
471
+ " '2,110 kms', '43,222 kms', '1,00,200 kms', '65 kms',\n",
472
+ " '1,40,000 kms', '1,03,553 kms', '58,000 kms', '1,20,000 kms',\n",
473
+ " '49,800 kms', '100 kms', '81,876 kms', '6,020 kms', '55,700 kms',\n",
474
+ " '18,500 kms', '1,80,000 kms', '53,000 kms', '35,500 kms',\n",
475
+ " '22,134 kms', '1,000 kms', '8,500 kms', '87,000 kms', '6,000 kms',\n",
476
+ " '15,574 kms', '8,000 kms', '55,800 kms', '56,400 kms',\n",
477
+ " '72,160 kms', '11,500 kms', '1,33,000 kms', '2,000 kms',\n",
478
+ " '88,000 kms', '65,422 kms', '1,17,000 kms', '1,50,000 kms',\n",
479
+ " '10,750 kms', '6,800 kms', '5 kms', '9,800 kms', '57,923 kms',\n",
480
+ " '30,201 kms', '6,200 kms', '37,518 kms', '24,652 kms', '383 kms',\n",
481
+ " '95,000 kms', '3,528 kms', '52,500 kms', '47,900 kms',\n",
482
+ " '52,800 kms', '1,95,000 kms', '48,008 kms', '48,247 kms',\n",
483
+ " '9,400 kms', '64,000 kms', '2,137 kms', '10,544 kms', '49,500 kms',\n",
484
+ " '1,47,000 kms', '90,001 kms', '48,006 kms', '74,000 kms',\n",
485
+ " '85,000 kms', '29,500 kms', '39,700 kms', '67,000 kms',\n",
486
+ " '19,336 kms', '60,105 kms', '45,933 kms', '1,02,563 kms',\n",
487
+ " '28,600 kms', '41,800 kms', '1,16,000 kms', '42,590 kms',\n",
488
+ " '7,400 kms', '54,500 kms', '76,000 kms', '00 kms', '11,523 kms',\n",
489
+ " '38,600 kms', '95,500 kms', '37,458 kms', '85,960 kms',\n",
490
+ " '12,516 kms', '30,600 kms', '2,550 kms', '62,500 kms',\n",
491
+ " '69,000 kms', '28,400 kms', '68,485 kms', '3,500 kms',\n",
492
+ " '85,455 kms', '63,000 kms', '1,600 kms', '77,000 kms',\n",
493
+ " '26,500 kms', '2,875 kms', '13,900 kms', '1,500 kms', '2,450 kms',\n",
494
+ " '1,625 kms', '33,400 kms', '60,123 kms', '38,900 kms',\n",
495
+ " '1,37,495 kms', '91,200 kms', '1,46,000 kms', '1,00,800 kms',\n",
496
+ " '2,100 kms', '2,500 kms', '1,32,000 kms', 'Petrol'], dtype=object)"
497
+ ]
498
+ },
499
+ "metadata": {},
500
+ "execution_count": 7
501
+ }
502
+ ]
503
+ },
504
+ {
505
+ "cell_type": "markdown",
506
+ "source": [
507
+ "All numeric data has camma, and kms.\n",
508
+ "also column has 'Petrol' string"
509
+ ],
510
+ "metadata": {
511
+ "id": "OW2xuYDdOeTa"
512
+ }
513
+ },
514
+ {
515
+ "cell_type": "code",
516
+ "source": [
517
+ "car['fuel_type'].unique()"
518
+ ],
519
+ "metadata": {
520
+ "colab": {
521
+ "base_uri": "https://localhost:8080/"
522
+ },
523
+ "id": "8G0rfwtgOaeJ",
524
+ "outputId": "562ebc56-52af-46da-9325-1bc708d0aa01"
525
+ },
526
+ "execution_count": null,
527
+ "outputs": [
528
+ {
529
+ "output_type": "execute_result",
530
+ "data": {
531
+ "text/plain": [
532
+ "array(['Petrol', 'Diesel', nan, 'LPG'], dtype=object)"
533
+ ]
534
+ },
535
+ "metadata": {},
536
+ "execution_count": 8
537
+ }
538
+ ]
539
+ },
540
+ {
541
+ "cell_type": "markdown",
542
+ "source": [
543
+ "## Quality of data\n",
544
+ "\n",
545
+ "1. year has many non-year values\n",
546
+ "2. Year object to int\n",
547
+ "3. price ask for price\n",
548
+ "4. price object to int\n",
549
+ "5. kms_driven has kms with intergers\n",
550
+ "6. kms_driven object to int\n",
551
+ "7. kms_driven has nan values\n",
552
+ "8. fuel_type has nan value\n",
553
+ "9. keep first 3 word of name"
554
+ ],
555
+ "metadata": {
556
+ "id": "b6QNQf33PFZ0"
557
+ }
558
+ },
559
+ {
560
+ "cell_type": "markdown",
561
+ "source": [
562
+ "## Cleaning"
563
+ ],
564
+ "metadata": {
565
+ "id": "GWwGOVJ_QGmQ"
566
+ }
567
+ },
568
+ {
569
+ "cell_type": "code",
570
+ "source": [
571
+ "backup = car.copy()"
572
+ ],
573
+ "metadata": {
574
+ "id": "iXGXeDukPC2J"
575
+ },
576
+ "execution_count": null,
577
+ "outputs": []
578
+ },
579
+ {
580
+ "cell_type": "code",
581
+ "source": [
582
+ "car=car[car['year'].str.isnumeric()]"
583
+ ],
584
+ "metadata": {
585
+ "id": "_MNBGYqUQMvM"
586
+ },
587
+ "execution_count": null,
588
+ "outputs": []
589
+ },
590
+ {
591
+ "cell_type": "code",
592
+ "source": [
593
+ "car['year']=car['year'].astype(int)"
594
+ ],
595
+ "metadata": {
596
+ "id": "fYHyyMyNQnJj",
597
+ "colab": {
598
+ "base_uri": "https://localhost:8080/"
599
+ },
600
+ "outputId": "dc46662d-8a98-44e2-f135-c85fda9edc65"
601
+ },
602
+ "execution_count": null,
603
+ "outputs": [
604
+ {
605
+ "output_type": "stream",
606
+ "name": "stderr",
607
+ "text": [
608
+ "<ipython-input-11-c95edc1f455b>:1: SettingWithCopyWarning: \n",
609
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
610
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
611
+ "\n",
612
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
613
+ " car['year']=car['year'].astype(int)\n"
614
+ ]
615
+ }
616
+ ]
617
+ },
618
+ {
619
+ "cell_type": "code",
620
+ "source": [
621
+ "car.info()"
622
+ ],
623
+ "metadata": {
624
+ "colab": {
625
+ "base_uri": "https://localhost:8080/"
626
+ },
627
+ "id": "9Al6QL_oQ9e3",
628
+ "outputId": "8d95c8a8-92a0-4fbd-c847-c1bd056fedda"
629
+ },
630
+ "execution_count": null,
631
+ "outputs": [
632
+ {
633
+ "output_type": "stream",
634
+ "name": "stdout",
635
+ "text": [
636
+ "<class 'pandas.core.frame.DataFrame'>\n",
637
+ "Int64Index: 842 entries, 0 to 891\n",
638
+ "Data columns (total 6 columns):\n",
639
+ " # Column Non-Null Count Dtype \n",
640
+ "--- ------ -------------- ----- \n",
641
+ " 0 name 842 non-null object\n",
642
+ " 1 company 842 non-null object\n",
643
+ " 2 year 842 non-null int64 \n",
644
+ " 3 Price 842 non-null object\n",
645
+ " 4 kms_driven 840 non-null object\n",
646
+ " 5 fuel_type 837 non-null object\n",
647
+ "dtypes: int64(1), object(5)\n",
648
+ "memory usage: 46.0+ KB\n"
649
+ ]
650
+ }
651
+ ]
652
+ },
653
+ {
654
+ "cell_type": "code",
655
+ "source": [
656
+ "car.shape"
657
+ ],
658
+ "metadata": {
659
+ "colab": {
660
+ "base_uri": "https://localhost:8080/"
661
+ },
662
+ "id": "O7ivSz7URJIR",
663
+ "outputId": "1d3282b9-118a-4173-9bc2-3acc5fd54a57"
664
+ },
665
+ "execution_count": null,
666
+ "outputs": [
667
+ {
668
+ "output_type": "execute_result",
669
+ "data": {
670
+ "text/plain": [
671
+ "(842, 6)"
672
+ ]
673
+ },
674
+ "metadata": {},
675
+ "execution_count": 13
676
+ }
677
+ ]
678
+ },
679
+ {
680
+ "cell_type": "code",
681
+ "source": [
682
+ "car=car[car['Price'] != 'Ask For Price']"
683
+ ],
684
+ "metadata": {
685
+ "id": "3JQg_JyRRNL7"
686
+ },
687
+ "execution_count": null,
688
+ "outputs": []
689
+ },
690
+ {
691
+ "cell_type": "code",
692
+ "source": [
693
+ "car['Price']=car['Price'].str.replace(',','').astype(int)"
694
+ ],
695
+ "metadata": {
696
+ "id": "mA4qN2hvRiXQ"
697
+ },
698
+ "execution_count": null,
699
+ "outputs": []
700
+ },
701
+ {
702
+ "cell_type": "code",
703
+ "source": [
704
+ "car['kms_driven']=car['kms_driven'].str.split(' ').str.get(0).str.replace(',','')"
705
+ ],
706
+ "metadata": {
707
+ "id": "uZ1Dc2d5R6i8"
708
+ },
709
+ "execution_count": null,
710
+ "outputs": []
711
+ },
712
+ {
713
+ "cell_type": "code",
714
+ "source": [
715
+ "car=car[car['kms_driven'].str.isnumeric()]"
716
+ ],
717
+ "metadata": {
718
+ "id": "4quYafuESjHB"
719
+ },
720
+ "execution_count": null,
721
+ "outputs": []
722
+ },
723
+ {
724
+ "cell_type": "code",
725
+ "source": [
726
+ "car['kms_driven']=car['kms_driven'].astype(int)"
727
+ ],
728
+ "metadata": {
729
+ "id": "5uYORIqaWXWy"
730
+ },
731
+ "execution_count": null,
732
+ "outputs": []
733
+ },
734
+ {
735
+ "cell_type": "code",
736
+ "source": [
737
+ "car=car[~car['fuel_type'].isna()]"
738
+ ],
739
+ "metadata": {
740
+ "id": "RhHcSCgsTVur"
741
+ },
742
+ "execution_count": null,
743
+ "outputs": []
744
+ },
745
+ {
746
+ "cell_type": "code",
747
+ "source": [
748
+ "car.shape"
749
+ ],
750
+ "metadata": {
751
+ "colab": {
752
+ "base_uri": "https://localhost:8080/"
753
+ },
754
+ "id": "VTzBHi3DT7lS",
755
+ "outputId": "a8c30b5c-bba9-48e9-f5c7-0da650f8a001"
756
+ },
757
+ "execution_count": null,
758
+ "outputs": [
759
+ {
760
+ "output_type": "execute_result",
761
+ "data": {
762
+ "text/plain": [
763
+ "(816, 6)"
764
+ ]
765
+ },
766
+ "metadata": {},
767
+ "execution_count": 20
768
+ }
769
+ ]
770
+ },
771
+ {
772
+ "cell_type": "code",
773
+ "source": [
774
+ "car['name']=car['name'].str.split(' ').str.slice(0,3).str.join(' ')"
775
+ ],
776
+ "metadata": {
777
+ "id": "1qStv-CNVVvB"
778
+ },
779
+ "execution_count": null,
780
+ "outputs": []
781
+ },
782
+ {
783
+ "cell_type": "code",
784
+ "source": [
785
+ "car.reset_index(drop=True)"
786
+ ],
787
+ "metadata": {
788
+ "colab": {
789
+ "base_uri": "https://localhost:8080/",
790
+ "height": 424
791
+ },
792
+ "id": "wUzYTdroVjuh",
793
+ "outputId": "d20835c7-583c-4e75-f9fd-2c64734e5de1"
794
+ },
795
+ "execution_count": null,
796
+ "outputs": [
797
+ {
798
+ "output_type": "execute_result",
799
+ "data": {
800
+ "text/plain": [
801
+ " name company year Price kms_driven fuel_type\n",
802
+ "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n",
803
+ "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n",
804
+ "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n",
805
+ "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n",
806
+ "4 Ford Figo Ford 2012 175000 41000 Diesel\n",
807
+ ".. ... ... ... ... ... ...\n",
808
+ "811 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n",
809
+ "812 Tata Indica V2 Tata 2009 110000 30000 Diesel\n",
810
+ "813 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n",
811
+ "814 Tata Zest XM Tata 2018 260000 27000 Diesel\n",
812
+ "815 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n",
813
+ "\n",
814
+ "[816 rows x 6 columns]"
815
+ ],
816
+ "text/html": [
817
+ "\n",
818
+ " <div id=\"df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad\">\n",
819
+ " <div class=\"colab-df-container\">\n",
820
+ " <div>\n",
821
+ "<style scoped>\n",
822
+ " .dataframe tbody tr th:only-of-type {\n",
823
+ " vertical-align: middle;\n",
824
+ " }\n",
825
+ "\n",
826
+ " .dataframe tbody tr th {\n",
827
+ " vertical-align: top;\n",
828
+ " }\n",
829
+ "\n",
830
+ " .dataframe thead th {\n",
831
+ " text-align: right;\n",
832
+ " }\n",
833
+ "</style>\n",
834
+ "<table border=\"1\" class=\"dataframe\">\n",
835
+ " <thead>\n",
836
+ " <tr style=\"text-align: right;\">\n",
837
+ " <th></th>\n",
838
+ " <th>name</th>\n",
839
+ " <th>company</th>\n",
840
+ " <th>year</th>\n",
841
+ " <th>Price</th>\n",
842
+ " <th>kms_driven</th>\n",
843
+ " <th>fuel_type</th>\n",
844
+ " </tr>\n",
845
+ " </thead>\n",
846
+ " <tbody>\n",
847
+ " <tr>\n",
848
+ " <th>0</th>\n",
849
+ " <td>Hyundai Santro Xing</td>\n",
850
+ " <td>Hyundai</td>\n",
851
+ " <td>2007</td>\n",
852
+ " <td>80000</td>\n",
853
+ " <td>45000</td>\n",
854
+ " <td>Petrol</td>\n",
855
+ " </tr>\n",
856
+ " <tr>\n",
857
+ " <th>1</th>\n",
858
+ " <td>Mahindra Jeep CL550</td>\n",
859
+ " <td>Mahindra</td>\n",
860
+ " <td>2006</td>\n",
861
+ " <td>425000</td>\n",
862
+ " <td>40</td>\n",
863
+ " <td>Diesel</td>\n",
864
+ " </tr>\n",
865
+ " <tr>\n",
866
+ " <th>2</th>\n",
867
+ " <td>Hyundai Grand i10</td>\n",
868
+ " <td>Hyundai</td>\n",
869
+ " <td>2014</td>\n",
870
+ " <td>325000</td>\n",
871
+ " <td>28000</td>\n",
872
+ " <td>Petrol</td>\n",
873
+ " </tr>\n",
874
+ " <tr>\n",
875
+ " <th>3</th>\n",
876
+ " <td>Ford EcoSport Titanium</td>\n",
877
+ " <td>Ford</td>\n",
878
+ " <td>2014</td>\n",
879
+ " <td>575000</td>\n",
880
+ " <td>36000</td>\n",
881
+ " <td>Diesel</td>\n",
882
+ " </tr>\n",
883
+ " <tr>\n",
884
+ " <th>4</th>\n",
885
+ " <td>Ford Figo</td>\n",
886
+ " <td>Ford</td>\n",
887
+ " <td>2012</td>\n",
888
+ " <td>175000</td>\n",
889
+ " <td>41000</td>\n",
890
+ " <td>Diesel</td>\n",
891
+ " </tr>\n",
892
+ " <tr>\n",
893
+ " <th>...</th>\n",
894
+ " <td>...</td>\n",
895
+ " <td>...</td>\n",
896
+ " <td>...</td>\n",
897
+ " <td>...</td>\n",
898
+ " <td>...</td>\n",
899
+ " <td>...</td>\n",
900
+ " </tr>\n",
901
+ " <tr>\n",
902
+ " <th>811</th>\n",
903
+ " <td>Maruti Suzuki Ritz</td>\n",
904
+ " <td>Maruti</td>\n",
905
+ " <td>2011</td>\n",
906
+ " <td>270000</td>\n",
907
+ " <td>50000</td>\n",
908
+ " <td>Petrol</td>\n",
909
+ " </tr>\n",
910
+ " <tr>\n",
911
+ " <th>812</th>\n",
912
+ " <td>Tata Indica V2</td>\n",
913
+ " <td>Tata</td>\n",
914
+ " <td>2009</td>\n",
915
+ " <td>110000</td>\n",
916
+ " <td>30000</td>\n",
917
+ " <td>Diesel</td>\n",
918
+ " </tr>\n",
919
+ " <tr>\n",
920
+ " <th>813</th>\n",
921
+ " <td>Toyota Corolla Altis</td>\n",
922
+ " <td>Toyota</td>\n",
923
+ " <td>2009</td>\n",
924
+ " <td>300000</td>\n",
925
+ " <td>132000</td>\n",
926
+ " <td>Petrol</td>\n",
927
+ " </tr>\n",
928
+ " <tr>\n",
929
+ " <th>814</th>\n",
930
+ " <td>Tata Zest XM</td>\n",
931
+ " <td>Tata</td>\n",
932
+ " <td>2018</td>\n",
933
+ " <td>260000</td>\n",
934
+ " <td>27000</td>\n",
935
+ " <td>Diesel</td>\n",
936
+ " </tr>\n",
937
+ " <tr>\n",
938
+ " <th>815</th>\n",
939
+ " <td>Mahindra Quanto C8</td>\n",
940
+ " <td>Mahindra</td>\n",
941
+ " <td>2013</td>\n",
942
+ " <td>390000</td>\n",
943
+ " <td>40000</td>\n",
944
+ " <td>Diesel</td>\n",
945
+ " </tr>\n",
946
+ " </tbody>\n",
947
+ "</table>\n",
948
+ "<p>816 rows × 6 columns</p>\n",
949
+ "</div>\n",
950
+ " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad')\"\n",
951
+ " title=\"Convert this dataframe to an interactive table.\"\n",
952
+ " style=\"display:none;\">\n",
953
+ " \n",
954
+ " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
955
+ " width=\"24px\">\n",
956
+ " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
957
+ " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
958
+ " </svg>\n",
959
+ " </button>\n",
960
+ " \n",
961
+ " <style>\n",
962
+ " .colab-df-container {\n",
963
+ " display:flex;\n",
964
+ " flex-wrap:wrap;\n",
965
+ " gap: 12px;\n",
966
+ " }\n",
967
+ "\n",
968
+ " .colab-df-convert {\n",
969
+ " background-color: #E8F0FE;\n",
970
+ " border: none;\n",
971
+ " border-radius: 50%;\n",
972
+ " cursor: pointer;\n",
973
+ " display: none;\n",
974
+ " fill: #1967D2;\n",
975
+ " height: 32px;\n",
976
+ " padding: 0 0 0 0;\n",
977
+ " width: 32px;\n",
978
+ " }\n",
979
+ "\n",
980
+ " .colab-df-convert:hover {\n",
981
+ " background-color: #E2EBFA;\n",
982
+ " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
983
+ " fill: #174EA6;\n",
984
+ " }\n",
985
+ "\n",
986
+ " [theme=dark] .colab-df-convert {\n",
987
+ " background-color: #3B4455;\n",
988
+ " fill: #D2E3FC;\n",
989
+ " }\n",
990
+ "\n",
991
+ " [theme=dark] .colab-df-convert:hover {\n",
992
+ " background-color: #434B5C;\n",
993
+ " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
994
+ " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
995
+ " fill: #FFFFFF;\n",
996
+ " }\n",
997
+ " </style>\n",
998
+ "\n",
999
+ " <script>\n",
1000
+ " const buttonEl =\n",
1001
+ " document.querySelector('#df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad button.colab-df-convert');\n",
1002
+ " buttonEl.style.display =\n",
1003
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
1004
+ "\n",
1005
+ " async function convertToInteractive(key) {\n",
1006
+ " const element = document.querySelector('#df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad');\n",
1007
+ " const dataTable =\n",
1008
+ " await google.colab.kernel.invokeFunction('convertToInteractive',\n",
1009
+ " [key], {});\n",
1010
+ " if (!dataTable) return;\n",
1011
+ "\n",
1012
+ " const docLinkHtml = 'Like what you see? Visit the ' +\n",
1013
+ " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
1014
+ " + ' to learn more about interactive tables.';\n",
1015
+ " element.innerHTML = '';\n",
1016
+ " dataTable['output_type'] = 'display_data';\n",
1017
+ " await google.colab.output.renderOutput(dataTable, element);\n",
1018
+ " const docLink = document.createElement('div');\n",
1019
+ " docLink.innerHTML = docLinkHtml;\n",
1020
+ " element.appendChild(docLink);\n",
1021
+ " }\n",
1022
+ " </script>\n",
1023
+ " </div>\n",
1024
+ " </div>\n",
1025
+ " "
1026
+ ]
1027
+ },
1028
+ "metadata": {},
1029
+ "execution_count": 22
1030
+ }
1031
+ ]
1032
+ },
1033
+ {
1034
+ "cell_type": "code",
1035
+ "source": [
1036
+ "car.info()"
1037
+ ],
1038
+ "metadata": {
1039
+ "colab": {
1040
+ "base_uri": "https://localhost:8080/"
1041
+ },
1042
+ "id": "zCqFEY-_V6Ki",
1043
+ "outputId": "ce435213-a276-4d46-d644-d4f0f23597b3"
1044
+ },
1045
+ "execution_count": null,
1046
+ "outputs": [
1047
+ {
1048
+ "output_type": "stream",
1049
+ "name": "stdout",
1050
+ "text": [
1051
+ "<class 'pandas.core.frame.DataFrame'>\n",
1052
+ "Int64Index: 816 entries, 0 to 889\n",
1053
+ "Data columns (total 6 columns):\n",
1054
+ " # Column Non-Null Count Dtype \n",
1055
+ "--- ------ -------------- ----- \n",
1056
+ " 0 name 816 non-null object\n",
1057
+ " 1 company 816 non-null object\n",
1058
+ " 2 year 816 non-null int64 \n",
1059
+ " 3 Price 816 non-null int64 \n",
1060
+ " 4 kms_driven 816 non-null int64 \n",
1061
+ " 5 fuel_type 816 non-null object\n",
1062
+ "dtypes: int64(3), object(3)\n",
1063
+ "memory usage: 44.6+ KB\n"
1064
+ ]
1065
+ }
1066
+ ]
1067
+ },
1068
+ {
1069
+ "cell_type": "code",
1070
+ "source": [
1071
+ "car.describe()"
1072
+ ],
1073
+ "metadata": {
1074
+ "colab": {
1075
+ "base_uri": "https://localhost:8080/",
1076
+ "height": 300
1077
+ },
1078
+ "id": "97ilwJBOWEWj",
1079
+ "outputId": "8841325e-30cb-47f2-82da-16a2bf9210e4"
1080
+ },
1081
+ "execution_count": null,
1082
+ "outputs": [
1083
+ {
1084
+ "output_type": "execute_result",
1085
+ "data": {
1086
+ "text/plain": [
1087
+ " year Price kms_driven\n",
1088
+ "count 816.000000 8.160000e+02 816.000000\n",
1089
+ "mean 2012.444853 4.117176e+05 46275.531863\n",
1090
+ "std 4.002992 4.751844e+05 34297.428044\n",
1091
+ "min 1995.000000 3.000000e+04 0.000000\n",
1092
+ "25% 2010.000000 1.750000e+05 27000.000000\n",
1093
+ "50% 2013.000000 2.999990e+05 41000.000000\n",
1094
+ "75% 2015.000000 4.912500e+05 56818.500000\n",
1095
+ "max 2019.000000 8.500003e+06 400000.000000"
1096
+ ],
1097
+ "text/html": [
1098
+ "\n",
1099
+ " <div id=\"df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0\">\n",
1100
+ " <div class=\"colab-df-container\">\n",
1101
+ " <div>\n",
1102
+ "<style scoped>\n",
1103
+ " .dataframe tbody tr th:only-of-type {\n",
1104
+ " vertical-align: middle;\n",
1105
+ " }\n",
1106
+ "\n",
1107
+ " .dataframe tbody tr th {\n",
1108
+ " vertical-align: top;\n",
1109
+ " }\n",
1110
+ "\n",
1111
+ " .dataframe thead th {\n",
1112
+ " text-align: right;\n",
1113
+ " }\n",
1114
+ "</style>\n",
1115
+ "<table border=\"1\" class=\"dataframe\">\n",
1116
+ " <thead>\n",
1117
+ " <tr style=\"text-align: right;\">\n",
1118
+ " <th></th>\n",
1119
+ " <th>year</th>\n",
1120
+ " <th>Price</th>\n",
1121
+ " <th>kms_driven</th>\n",
1122
+ " </tr>\n",
1123
+ " </thead>\n",
1124
+ " <tbody>\n",
1125
+ " <tr>\n",
1126
+ " <th>count</th>\n",
1127
+ " <td>816.000000</td>\n",
1128
+ " <td>8.160000e+02</td>\n",
1129
+ " <td>816.000000</td>\n",
1130
+ " </tr>\n",
1131
+ " <tr>\n",
1132
+ " <th>mean</th>\n",
1133
+ " <td>2012.444853</td>\n",
1134
+ " <td>4.117176e+05</td>\n",
1135
+ " <td>46275.531863</td>\n",
1136
+ " </tr>\n",
1137
+ " <tr>\n",
1138
+ " <th>std</th>\n",
1139
+ " <td>4.002992</td>\n",
1140
+ " <td>4.751844e+05</td>\n",
1141
+ " <td>34297.428044</td>\n",
1142
+ " </tr>\n",
1143
+ " <tr>\n",
1144
+ " <th>min</th>\n",
1145
+ " <td>1995.000000</td>\n",
1146
+ " <td>3.000000e+04</td>\n",
1147
+ " <td>0.000000</td>\n",
1148
+ " </tr>\n",
1149
+ " <tr>\n",
1150
+ " <th>25%</th>\n",
1151
+ " <td>2010.000000</td>\n",
1152
+ " <td>1.750000e+05</td>\n",
1153
+ " <td>27000.000000</td>\n",
1154
+ " </tr>\n",
1155
+ " <tr>\n",
1156
+ " <th>50%</th>\n",
1157
+ " <td>2013.000000</td>\n",
1158
+ " <td>2.999990e+05</td>\n",
1159
+ " <td>41000.000000</td>\n",
1160
+ " </tr>\n",
1161
+ " <tr>\n",
1162
+ " <th>75%</th>\n",
1163
+ " <td>2015.000000</td>\n",
1164
+ " <td>4.912500e+05</td>\n",
1165
+ " <td>56818.500000</td>\n",
1166
+ " </tr>\n",
1167
+ " <tr>\n",
1168
+ " <th>max</th>\n",
1169
+ " <td>2019.000000</td>\n",
1170
+ " <td>8.500003e+06</td>\n",
1171
+ " <td>400000.000000</td>\n",
1172
+ " </tr>\n",
1173
+ " </tbody>\n",
1174
+ "</table>\n",
1175
+ "</div>\n",
1176
+ " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0')\"\n",
1177
+ " title=\"Convert this dataframe to an interactive table.\"\n",
1178
+ " style=\"display:none;\">\n",
1179
+ " \n",
1180
+ " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
1181
+ " width=\"24px\">\n",
1182
+ " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
1183
+ " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
1184
+ " </svg>\n",
1185
+ " </button>\n",
1186
+ " \n",
1187
+ " <style>\n",
1188
+ " .colab-df-container {\n",
1189
+ " display:flex;\n",
1190
+ " flex-wrap:wrap;\n",
1191
+ " gap: 12px;\n",
1192
+ " }\n",
1193
+ "\n",
1194
+ " .colab-df-convert {\n",
1195
+ " background-color: #E8F0FE;\n",
1196
+ " border: none;\n",
1197
+ " border-radius: 50%;\n",
1198
+ " cursor: pointer;\n",
1199
+ " display: none;\n",
1200
+ " fill: #1967D2;\n",
1201
+ " height: 32px;\n",
1202
+ " padding: 0 0 0 0;\n",
1203
+ " width: 32px;\n",
1204
+ " }\n",
1205
+ "\n",
1206
+ " .colab-df-convert:hover {\n",
1207
+ " background-color: #E2EBFA;\n",
1208
+ " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
1209
+ " fill: #174EA6;\n",
1210
+ " }\n",
1211
+ "\n",
1212
+ " [theme=dark] .colab-df-convert {\n",
1213
+ " background-color: #3B4455;\n",
1214
+ " fill: #D2E3FC;\n",
1215
+ " }\n",
1216
+ "\n",
1217
+ " [theme=dark] .colab-df-convert:hover {\n",
1218
+ " background-color: #434B5C;\n",
1219
+ " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
1220
+ " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
1221
+ " fill: #FFFFFF;\n",
1222
+ " }\n",
1223
+ " </style>\n",
1224
+ "\n",
1225
+ " <script>\n",
1226
+ " const buttonEl =\n",
1227
+ " document.querySelector('#df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0 button.colab-df-convert');\n",
1228
+ " buttonEl.style.display =\n",
1229
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
1230
+ "\n",
1231
+ " async function convertToInteractive(key) {\n",
1232
+ " const element = document.querySelector('#df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0');\n",
1233
+ " const dataTable =\n",
1234
+ " await google.colab.kernel.invokeFunction('convertToInteractive',\n",
1235
+ " [key], {});\n",
1236
+ " if (!dataTable) return;\n",
1237
+ "\n",
1238
+ " const docLinkHtml = 'Like what you see? Visit the ' +\n",
1239
+ " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
1240
+ " + ' to learn more about interactive tables.';\n",
1241
+ " element.innerHTML = '';\n",
1242
+ " dataTable['output_type'] = 'display_data';\n",
1243
+ " await google.colab.output.renderOutput(dataTable, element);\n",
1244
+ " const docLink = document.createElement('div');\n",
1245
+ " docLink.innerHTML = docLinkHtml;\n",
1246
+ " element.appendChild(docLink);\n",
1247
+ " }\n",
1248
+ " </script>\n",
1249
+ " </div>\n",
1250
+ " </div>\n",
1251
+ " "
1252
+ ]
1253
+ },
1254
+ "metadata": {},
1255
+ "execution_count": 24
1256
+ }
1257
+ ]
1258
+ },
1259
+ {
1260
+ "cell_type": "code",
1261
+ "source": [
1262
+ "car=car[car['Price']<6e6]"
1263
+ ],
1264
+ "metadata": {
1265
+ "id": "I6ZlcuaYWn_4"
1266
+ },
1267
+ "execution_count": null,
1268
+ "outputs": []
1269
+ },
1270
+ {
1271
+ "cell_type": "code",
1272
+ "source": [
1273
+ "car.to_csv('cleaned car.csv')"
1274
+ ],
1275
+ "metadata": {
1276
+ "id": "OSATadwKngdW"
1277
+ },
1278
+ "execution_count": null,
1279
+ "outputs": []
1280
+ },
1281
+ {
1282
+ "cell_type": "markdown",
1283
+ "source": [
1284
+ "## Model"
1285
+ ],
1286
+ "metadata": {
1287
+ "id": "cY-nLpwXoz09"
1288
+ }
1289
+ },
1290
+ {
1291
+ "cell_type": "code",
1292
+ "source": [
1293
+ "x=car.drop(columns='Price')\n",
1294
+ "y=car.Price"
1295
+ ],
1296
+ "metadata": {
1297
+ "id": "KGCSWc8HoeGZ"
1298
+ },
1299
+ "execution_count": null,
1300
+ "outputs": []
1301
+ },
1302
+ {
1303
+ "cell_type": "code",
1304
+ "source": [
1305
+ "x"
1306
+ ],
1307
+ "metadata": {
1308
+ "colab": {
1309
+ "base_uri": "https://localhost:8080/",
1310
+ "height": 424
1311
+ },
1312
+ "id": "as2r7WYxpFs5",
1313
+ "outputId": "ead73d06-997f-4c07-998a-6e6dd74f1761"
1314
+ },
1315
+ "execution_count": null,
1316
+ "outputs": [
1317
+ {
1318
+ "output_type": "execute_result",
1319
+ "data": {
1320
+ "text/plain": [
1321
+ " name company year kms_driven fuel_type\n",
1322
+ "0 Hyundai Santro Xing Hyundai 2007 45000 Petrol\n",
1323
+ "1 Mahindra Jeep CL550 Mahindra 2006 40 Diesel\n",
1324
+ "3 Hyundai Grand i10 Hyundai 2014 28000 Petrol\n",
1325
+ "4 Ford EcoSport Titanium Ford 2014 36000 Diesel\n",
1326
+ "6 Ford Figo Ford 2012 41000 Diesel\n",
1327
+ ".. ... ... ... ... ...\n",
1328
+ "883 Maruti Suzuki Ritz Maruti 2011 50000 Petrol\n",
1329
+ "885 Tata Indica V2 Tata 2009 30000 Diesel\n",
1330
+ "886 Toyota Corolla Altis Toyota 2009 132000 Petrol\n",
1331
+ "888 Tata Zest XM Tata 2018 27000 Diesel\n",
1332
+ "889 Mahindra Quanto C8 Mahindra 2013 40000 Diesel\n",
1333
+ "\n",
1334
+ "[815 rows x 5 columns]"
1335
+ ],
1336
+ "text/html": [
1337
+ "\n",
1338
+ " <div id=\"df-6d2e5997-e433-44e9-bdfb-c792d491d011\">\n",
1339
+ " <div class=\"colab-df-container\">\n",
1340
+ " <div>\n",
1341
+ "<style scoped>\n",
1342
+ " .dataframe tbody tr th:only-of-type {\n",
1343
+ " vertical-align: middle;\n",
1344
+ " }\n",
1345
+ "\n",
1346
+ " .dataframe tbody tr th {\n",
1347
+ " vertical-align: top;\n",
1348
+ " }\n",
1349
+ "\n",
1350
+ " .dataframe thead th {\n",
1351
+ " text-align: right;\n",
1352
+ " }\n",
1353
+ "</style>\n",
1354
+ "<table border=\"1\" class=\"dataframe\">\n",
1355
+ " <thead>\n",
1356
+ " <tr style=\"text-align: right;\">\n",
1357
+ " <th></th>\n",
1358
+ " <th>name</th>\n",
1359
+ " <th>company</th>\n",
1360
+ " <th>year</th>\n",
1361
+ " <th>kms_driven</th>\n",
1362
+ " <th>fuel_type</th>\n",
1363
+ " </tr>\n",
1364
+ " </thead>\n",
1365
+ " <tbody>\n",
1366
+ " <tr>\n",
1367
+ " <th>0</th>\n",
1368
+ " <td>Hyundai Santro Xing</td>\n",
1369
+ " <td>Hyundai</td>\n",
1370
+ " <td>2007</td>\n",
1371
+ " <td>45000</td>\n",
1372
+ " <td>Petrol</td>\n",
1373
+ " </tr>\n",
1374
+ " <tr>\n",
1375
+ " <th>1</th>\n",
1376
+ " <td>Mahindra Jeep CL550</td>\n",
1377
+ " <td>Mahindra</td>\n",
1378
+ " <td>2006</td>\n",
1379
+ " <td>40</td>\n",
1380
+ " <td>Diesel</td>\n",
1381
+ " </tr>\n",
1382
+ " <tr>\n",
1383
+ " <th>3</th>\n",
1384
+ " <td>Hyundai Grand i10</td>\n",
1385
+ " <td>Hyundai</td>\n",
1386
+ " <td>2014</td>\n",
1387
+ " <td>28000</td>\n",
1388
+ " <td>Petrol</td>\n",
1389
+ " </tr>\n",
1390
+ " <tr>\n",
1391
+ " <th>4</th>\n",
1392
+ " <td>Ford EcoSport Titanium</td>\n",
1393
+ " <td>Ford</td>\n",
1394
+ " <td>2014</td>\n",
1395
+ " <td>36000</td>\n",
1396
+ " <td>Diesel</td>\n",
1397
+ " </tr>\n",
1398
+ " <tr>\n",
1399
+ " <th>6</th>\n",
1400
+ " <td>Ford Figo</td>\n",
1401
+ " <td>Ford</td>\n",
1402
+ " <td>2012</td>\n",
1403
+ " <td>41000</td>\n",
1404
+ " <td>Diesel</td>\n",
1405
+ " </tr>\n",
1406
+ " <tr>\n",
1407
+ " <th>...</th>\n",
1408
+ " <td>...</td>\n",
1409
+ " <td>...</td>\n",
1410
+ " <td>...</td>\n",
1411
+ " <td>...</td>\n",
1412
+ " <td>...</td>\n",
1413
+ " </tr>\n",
1414
+ " <tr>\n",
1415
+ " <th>883</th>\n",
1416
+ " <td>Maruti Suzuki Ritz</td>\n",
1417
+ " <td>Maruti</td>\n",
1418
+ " <td>2011</td>\n",
1419
+ " <td>50000</td>\n",
1420
+ " <td>Petrol</td>\n",
1421
+ " </tr>\n",
1422
+ " <tr>\n",
1423
+ " <th>885</th>\n",
1424
+ " <td>Tata Indica V2</td>\n",
1425
+ " <td>Tata</td>\n",
1426
+ " <td>2009</td>\n",
1427
+ " <td>30000</td>\n",
1428
+ " <td>Diesel</td>\n",
1429
+ " </tr>\n",
1430
+ " <tr>\n",
1431
+ " <th>886</th>\n",
1432
+ " <td>Toyota Corolla Altis</td>\n",
1433
+ " <td>Toyota</td>\n",
1434
+ " <td>2009</td>\n",
1435
+ " <td>132000</td>\n",
1436
+ " <td>Petrol</td>\n",
1437
+ " </tr>\n",
1438
+ " <tr>\n",
1439
+ " <th>888</th>\n",
1440
+ " <td>Tata Zest XM</td>\n",
1441
+ " <td>Tata</td>\n",
1442
+ " <td>2018</td>\n",
1443
+ " <td>27000</td>\n",
1444
+ " <td>Diesel</td>\n",
1445
+ " </tr>\n",
1446
+ " <tr>\n",
1447
+ " <th>889</th>\n",
1448
+ " <td>Mahindra Quanto C8</td>\n",
1449
+ " <td>Mahindra</td>\n",
1450
+ " <td>2013</td>\n",
1451
+ " <td>40000</td>\n",
1452
+ " <td>Diesel</td>\n",
1453
+ " </tr>\n",
1454
+ " </tbody>\n",
1455
+ "</table>\n",
1456
+ "<p>815 rows × 5 columns</p>\n",
1457
+ "</div>\n",
1458
+ " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6d2e5997-e433-44e9-bdfb-c792d491d011')\"\n",
1459
+ " title=\"Convert this dataframe to an interactive table.\"\n",
1460
+ " style=\"display:none;\">\n",
1461
+ " \n",
1462
+ " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
1463
+ " width=\"24px\">\n",
1464
+ " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
1465
+ " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
1466
+ " </svg>\n",
1467
+ " </button>\n",
1468
+ " \n",
1469
+ " <style>\n",
1470
+ " .colab-df-container {\n",
1471
+ " display:flex;\n",
1472
+ " flex-wrap:wrap;\n",
1473
+ " gap: 12px;\n",
1474
+ " }\n",
1475
+ "\n",
1476
+ " .colab-df-convert {\n",
1477
+ " background-color: #E8F0FE;\n",
1478
+ " border: none;\n",
1479
+ " border-radius: 50%;\n",
1480
+ " cursor: pointer;\n",
1481
+ " display: none;\n",
1482
+ " fill: #1967D2;\n",
1483
+ " height: 32px;\n",
1484
+ " padding: 0 0 0 0;\n",
1485
+ " width: 32px;\n",
1486
+ " }\n",
1487
+ "\n",
1488
+ " .colab-df-convert:hover {\n",
1489
+ " background-color: #E2EBFA;\n",
1490
+ " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
1491
+ " fill: #174EA6;\n",
1492
+ " }\n",
1493
+ "\n",
1494
+ " [theme=dark] .colab-df-convert {\n",
1495
+ " background-color: #3B4455;\n",
1496
+ " fill: #D2E3FC;\n",
1497
+ " }\n",
1498
+ "\n",
1499
+ " [theme=dark] .colab-df-convert:hover {\n",
1500
+ " background-color: #434B5C;\n",
1501
+ " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
1502
+ " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
1503
+ " fill: #FFFFFF;\n",
1504
+ " }\n",
1505
+ " </style>\n",
1506
+ "\n",
1507
+ " <script>\n",
1508
+ " const buttonEl =\n",
1509
+ " document.querySelector('#df-6d2e5997-e433-44e9-bdfb-c792d491d011 button.colab-df-convert');\n",
1510
+ " buttonEl.style.display =\n",
1511
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
1512
+ "\n",
1513
+ " async function convertToInteractive(key) {\n",
1514
+ " const element = document.querySelector('#df-6d2e5997-e433-44e9-bdfb-c792d491d011');\n",
1515
+ " const dataTable =\n",
1516
+ " await google.colab.kernel.invokeFunction('convertToInteractive',\n",
1517
+ " [key], {});\n",
1518
+ " if (!dataTable) return;\n",
1519
+ "\n",
1520
+ " const docLinkHtml = 'Like what you see? Visit the ' +\n",
1521
+ " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
1522
+ " + ' to learn more about interactive tables.';\n",
1523
+ " element.innerHTML = '';\n",
1524
+ " dataTable['output_type'] = 'display_data';\n",
1525
+ " await google.colab.output.renderOutput(dataTable, element);\n",
1526
+ " const docLink = document.createElement('div');\n",
1527
+ " docLink.innerHTML = docLinkHtml;\n",
1528
+ " element.appendChild(docLink);\n",
1529
+ " }\n",
1530
+ " </script>\n",
1531
+ " </div>\n",
1532
+ " </div>\n",
1533
+ " "
1534
+ ]
1535
+ },
1536
+ "metadata": {},
1537
+ "execution_count": 28
1538
+ }
1539
+ ]
1540
+ },
1541
+ {
1542
+ "cell_type": "code",
1543
+ "source": [
1544
+ "y"
1545
+ ],
1546
+ "metadata": {
1547
+ "colab": {
1548
+ "base_uri": "https://localhost:8080/"
1549
+ },
1550
+ "id": "EYo6tsKQpIPz",
1551
+ "outputId": "8a5237c2-a990-4df9-bfb6-c86013be1092"
1552
+ },
1553
+ "execution_count": null,
1554
+ "outputs": [
1555
+ {
1556
+ "output_type": "execute_result",
1557
+ "data": {
1558
+ "text/plain": [
1559
+ "0 80000\n",
1560
+ "1 425000\n",
1561
+ "3 325000\n",
1562
+ "4 575000\n",
1563
+ "6 175000\n",
1564
+ " ... \n",
1565
+ "883 270000\n",
1566
+ "885 110000\n",
1567
+ "886 300000\n",
1568
+ "888 260000\n",
1569
+ "889 390000\n",
1570
+ "Name: Price, Length: 815, dtype: int64"
1571
+ ]
1572
+ },
1573
+ "metadata": {},
1574
+ "execution_count": 29
1575
+ }
1576
+ ]
1577
+ },
1578
+ {
1579
+ "cell_type": "code",
1580
+ "source": [
1581
+ "from sklearn.model_selection import train_test_split\n",
1582
+ "\n",
1583
+ "x_train, x_test,y_train,y_test = train_test_split(x,y, test_size=0.2, random_state=1)"
1584
+ ],
1585
+ "metadata": {
1586
+ "id": "GU4fNOrzpLnE"
1587
+ },
1588
+ "execution_count": null,
1589
+ "outputs": []
1590
+ },
1591
+ {
1592
+ "cell_type": "code",
1593
+ "source": [
1594
+ "from sklearn.linear_model import LinearRegression\n",
1595
+ "from sklearn.metrics import r2_score\n",
1596
+ "from sklearn.preprocessing import OneHotEncoder\n",
1597
+ "from sklearn.compose import make_column_transformer\n",
1598
+ "from sklearn.pipeline import make_pipeline"
1599
+ ],
1600
+ "metadata": {
1601
+ "id": "nZB719Azps7t"
1602
+ },
1603
+ "execution_count": null,
1604
+ "outputs": []
1605
+ },
1606
+ {
1607
+ "cell_type": "code",
1608
+ "source": [
1609
+ "ohe = OneHotEncoder()\n",
1610
+ "\n",
1611
+ "ohe.fit(x[['name','company','fuel_type']])"
1612
+ ],
1613
+ "metadata": {
1614
+ "colab": {
1615
+ "base_uri": "https://localhost:8080/",
1616
+ "height": 75
1617
+ },
1618
+ "id": "-3CjyNTrqDq0",
1619
+ "outputId": "13aa2a5a-5430-46bf-c9bc-80bc5b173237"
1620
+ },
1621
+ "execution_count": null,
1622
+ "outputs": [
1623
+ {
1624
+ "output_type": "execute_result",
1625
+ "data": {
1626
+ "text/plain": [
1627
+ "OneHotEncoder()"
1628
+ ],
1629
+ "text/html": [
1630
+ "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>OneHotEncoder()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">OneHotEncoder</label><div class=\"sk-toggleable__content\"><pre>OneHotEncoder()</pre></div></div></div></div></div>"
1631
+ ]
1632
+ },
1633
+ "metadata": {},
1634
+ "execution_count": 32
1635
+ }
1636
+ ]
1637
+ },
1638
+ {
1639
+ "cell_type": "code",
1640
+ "source": [
1641
+ "column_trans = make_column_transformer((OneHotEncoder(categories=ohe.categories_),['name','company','fuel_type']), remainder='passthrough')"
1642
+ ],
1643
+ "metadata": {
1644
+ "id": "Lz5Oa5CVryOD"
1645
+ },
1646
+ "execution_count": null,
1647
+ "outputs": []
1648
+ },
1649
+ {
1650
+ "cell_type": "code",
1651
+ "source": [
1652
+ "lr=LinearRegression()"
1653
+ ],
1654
+ "metadata": {
1655
+ "id": "h2-fyidUsBgq"
1656
+ },
1657
+ "execution_count": null,
1658
+ "outputs": []
1659
+ },
1660
+ {
1661
+ "cell_type": "code",
1662
+ "source": [
1663
+ "pipe=make_pipeline(column_trans,lr)"
1664
+ ],
1665
+ "metadata": {
1666
+ "id": "ItK-P-f_uPL4"
1667
+ },
1668
+ "execution_count": null,
1669
+ "outputs": []
1670
+ },
1671
+ {
1672
+ "cell_type": "code",
1673
+ "source": [
1674
+ "pipe.fit(x_train,y_train)"
1675
+ ],
1676
+ "metadata": {
1677
+ "colab": {
1678
+ "base_uri": "https://localhost:8080/",
1679
+ "height": 192
1680
+ },
1681
+ "id": "lFvb7w-hulX3",
1682
+ "outputId": "d755c75f-4aec-4f90-cd4e-c096b17e002a"
1683
+ },
1684
+ "execution_count": null,
1685
+ "outputs": [
1686
+ {
1687
+ "output_type": "execute_result",
1688
+ "data": {
1689
+ "text/plain": [
1690
+ "Pipeline(steps=[('columntransformer',\n",
1691
+ " ColumnTransformer(remainder='passthrough',\n",
1692
+ " transformers=[('onehotencoder',\n",
1693
+ " OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n",
1694
+ " 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n",
1695
+ " 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n",
1696
+ " 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n",
1697
+ " array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n",
1698
+ " 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n",
1699
+ " 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n",
1700
+ " 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n",
1701
+ " dtype=object),\n",
1702
+ " array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n",
1703
+ " ['name', 'company',\n",
1704
+ " 'fuel_type'])])),\n",
1705
+ " ('linearregression', LinearRegression())])"
1706
+ ],
1707
+ "text/html": [
1708
+ "<style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,\n",
1709
+ " ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
1710
+ " transformers=[(&#x27;onehotencoder&#x27;,\n",
1711
+ " OneHotEncoder(categories=[array([&#x27;Audi A3 Cabriolet&#x27;, &#x27;Audi A4 1.8&#x27;, &#x27;Audi A4 2.0&#x27;, &#x27;Audi A6 2.0&#x27;,\n",
1712
+ " &#x27;Audi A8&#x27;, &#x27;Audi Q3 2.0&#x27;, &#x27;Audi Q5 2.0&#x27;, &#x27;Audi Q7&#x27;, &#x27;BMW 3 Series&#x27;,\n",
1713
+ " &#x27;BMW 5 Series&#x27;, &#x27;BMW 7 Series&#x27;, &#x27;BMW X1&#x27;, &#x27;BMW X1 sDrive20d&#x27;,\n",
1714
+ " &#x27;BMW X1 xDrive20d&#x27;, &#x27;Chevrolet Beat&#x27;, &#x27;Chevrolet Beat...\n",
1715
+ " array([&#x27;Audi&#x27;, &#x27;BMW&#x27;, &#x27;Chevrolet&#x27;, &#x27;Datsun&#x27;, &#x27;Fiat&#x27;, &#x27;Force&#x27;, &#x27;Ford&#x27;,\n",
1716
+ " &#x27;Hindustan&#x27;, &#x27;Honda&#x27;, &#x27;Hyundai&#x27;, &#x27;Jaguar&#x27;, &#x27;Jeep&#x27;, &#x27;Land&#x27;,\n",
1717
+ " &#x27;Mahindra&#x27;, &#x27;Maruti&#x27;, &#x27;Mercedes&#x27;, &#x27;Mini&#x27;, &#x27;Mitsubishi&#x27;, &#x27;Nissan&#x27;,\n",
1718
+ " &#x27;Renault&#x27;, &#x27;Skoda&#x27;, &#x27;Tata&#x27;, &#x27;Toyota&#x27;, &#x27;Volkswagen&#x27;, &#x27;Volvo&#x27;],\n",
1719
+ " dtype=object),\n",
1720
+ " array([&#x27;Diesel&#x27;, &#x27;LPG&#x27;, &#x27;Petrol&#x27;], dtype=object)]),\n",
1721
+ " [&#x27;name&#x27;, &#x27;company&#x27;,\n",
1722
+ " &#x27;fuel_type&#x27;])])),\n",
1723
+ " (&#x27;linearregression&#x27;, LinearRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-9\" type=\"checkbox\" ><label for=\"sk-estimator-id-9\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,\n",
1724
+ " ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
1725
+ " transformers=[(&#x27;onehotencoder&#x27;,\n",
1726
+ " OneHotEncoder(categories=[array([&#x27;Audi A3 Cabriolet&#x27;, &#x27;Audi A4 1.8&#x27;, &#x27;Audi A4 2.0&#x27;, &#x27;Audi A6 2.0&#x27;,\n",
1727
+ " &#x27;Audi A8&#x27;, &#x27;Audi Q3 2.0&#x27;, &#x27;Audi Q5 2.0&#x27;, &#x27;Audi Q7&#x27;, &#x27;BMW 3 Series&#x27;,\n",
1728
+ " &#x27;BMW 5 Series&#x27;, &#x27;BMW 7 Series&#x27;, &#x27;BMW X1&#x27;, &#x27;BMW X1 sDrive20d&#x27;,\n",
1729
+ " &#x27;BMW X1 xDrive20d&#x27;, &#x27;Chevrolet Beat&#x27;, &#x27;Chevrolet Beat...\n",
1730
+ " array([&#x27;Audi&#x27;, &#x27;BMW&#x27;, &#x27;Chevrolet&#x27;, &#x27;Datsun&#x27;, &#x27;Fiat&#x27;, &#x27;Force&#x27;, &#x27;Ford&#x27;,\n",
1731
+ " &#x27;Hindustan&#x27;, &#x27;Honda&#x27;, &#x27;Hyundai&#x27;, &#x27;Jaguar&#x27;, &#x27;Jeep&#x27;, &#x27;Land&#x27;,\n",
1732
+ " &#x27;Mahindra&#x27;, &#x27;Maruti&#x27;, &#x27;Mercedes&#x27;, &#x27;Mini&#x27;, &#x27;Mitsubishi&#x27;, &#x27;Nissan&#x27;,\n",
1733
+ " &#x27;Renault&#x27;, &#x27;Skoda&#x27;, &#x27;Tata&#x27;, &#x27;Toyota&#x27;, &#x27;Volkswagen&#x27;, &#x27;Volvo&#x27;],\n",
1734
+ " dtype=object),\n",
1735
+ " array([&#x27;Diesel&#x27;, &#x27;LPG&#x27;, &#x27;Petrol&#x27;], dtype=object)]),\n",
1736
+ " [&#x27;name&#x27;, &#x27;company&#x27;,\n",
1737
+ " &#x27;fuel_type&#x27;])])),\n",
1738
+ " (&#x27;linearregression&#x27;, LinearRegression())])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-10\" type=\"checkbox\" ><label for=\"sk-estimator-id-10\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">columntransformer: ColumnTransformer</label><div class=\"sk-toggleable__content\"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
1739
+ " transformers=[(&#x27;onehotencoder&#x27;,\n",
1740
+ " OneHotEncoder(categories=[array([&#x27;Audi A3 Cabriolet&#x27;, &#x27;Audi A4 1.8&#x27;, &#x27;Audi A4 2.0&#x27;, &#x27;Audi A6 2.0&#x27;,\n",
1741
+ " &#x27;Audi A8&#x27;, &#x27;Audi Q3 2.0&#x27;, &#x27;Audi Q5 2.0&#x27;, &#x27;Audi Q7&#x27;, &#x27;BMW 3 Series&#x27;,\n",
1742
+ " &#x27;BMW 5 Series&#x27;, &#x27;BMW 7 Series&#x27;, &#x27;BMW X1&#x27;, &#x27;BMW X1 sDrive20d&#x27;,\n",
1743
+ " &#x27;BMW X1 xDrive20d&#x27;, &#x27;Chevrolet Beat&#x27;, &#x27;Chevrolet Beat Diesel&#x27;,\n",
1744
+ " &#x27;Chevrolet Beat LS&#x27;, &#x27;Chevrolet B...\n",
1745
+ " &#x27;Volkswagen Vento Konekt&#x27;, &#x27;Volvo S80 Summum&#x27;], dtype=object),\n",
1746
+ " array([&#x27;Audi&#x27;, &#x27;BMW&#x27;, &#x27;Chevrolet&#x27;, &#x27;Datsun&#x27;, &#x27;Fiat&#x27;, &#x27;Force&#x27;, &#x27;Ford&#x27;,\n",
1747
+ " &#x27;Hindustan&#x27;, &#x27;Honda&#x27;, &#x27;Hyundai&#x27;, &#x27;Jaguar&#x27;, &#x27;Jeep&#x27;, &#x27;Land&#x27;,\n",
1748
+ " &#x27;Mahindra&#x27;, &#x27;Maruti&#x27;, &#x27;Mercedes&#x27;, &#x27;Mini&#x27;, &#x27;Mitsubishi&#x27;, &#x27;Nissan&#x27;,\n",
1749
+ " &#x27;Renault&#x27;, &#x27;Skoda&#x27;, &#x27;Tata&#x27;, &#x27;Toyota&#x27;, &#x27;Volkswagen&#x27;, &#x27;Volvo&#x27;],\n",
1750
+ " dtype=object),\n",
1751
+ " array([&#x27;Diesel&#x27;, &#x27;LPG&#x27;, &#x27;Petrol&#x27;], dtype=object)]),\n",
1752
+ " [&#x27;name&#x27;, &#x27;company&#x27;, &#x27;fuel_type&#x27;])])</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-11\" type=\"checkbox\" ><label for=\"sk-estimator-id-11\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">onehotencoder</label><div class=\"sk-toggleable__content\"><pre>[&#x27;name&#x27;, &#x27;company&#x27;, &#x27;fuel_type&#x27;]</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-12\" type=\"checkbox\" ><label for=\"sk-estimator-id-12\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">OneHotEncoder</label><div class=\"sk-toggleable__content\"><pre>OneHotEncoder(categories=[array([&#x27;Audi A3 Cabriolet&#x27;, &#x27;Audi A4 1.8&#x27;, &#x27;Audi A4 2.0&#x27;, &#x27;Audi A6 2.0&#x27;,\n",
1753
+ " &#x27;Audi A8&#x27;, &#x27;Audi Q3 2.0&#x27;, &#x27;Audi Q5 2.0&#x27;, &#x27;Audi Q7&#x27;, &#x27;BMW 3 Series&#x27;,\n",
1754
+ " &#x27;BMW 5 Series&#x27;, &#x27;BMW 7 Series&#x27;, &#x27;BMW X1&#x27;, &#x27;BMW X1 sDrive20d&#x27;,\n",
1755
+ " &#x27;BMW X1 xDrive20d&#x27;, &#x27;Chevrolet Beat&#x27;, &#x27;Chevrolet Beat Diesel&#x27;,\n",
1756
+ " &#x27;Chevrolet Beat LS&#x27;, &#x27;Chevrolet Beat LT&#x27;, &#x27;Chevrolet Beat PS&#x27;,\n",
1757
+ " &#x27;Chevrolet Cruze LTZ&#x27;, &#x27;Chevrolet Enjoy&#x27;, &#x27;Chevrolet E...\n",
1758
+ " &#x27;Volkswagen Vento Comfortline&#x27;, &#x27;Volkswagen Vento Highline&#x27;,\n",
1759
+ " &#x27;Volkswagen Vento Konekt&#x27;, &#x27;Volvo S80 Summum&#x27;], dtype=object),\n",
1760
+ " array([&#x27;Audi&#x27;, &#x27;BMW&#x27;, &#x27;Chevrolet&#x27;, &#x27;Datsun&#x27;, &#x27;Fiat&#x27;, &#x27;Force&#x27;, &#x27;Ford&#x27;,\n",
1761
+ " &#x27;Hindustan&#x27;, &#x27;Honda&#x27;, &#x27;Hyundai&#x27;, &#x27;Jaguar&#x27;, &#x27;Jeep&#x27;, &#x27;Land&#x27;,\n",
1762
+ " &#x27;Mahindra&#x27;, &#x27;Maruti&#x27;, &#x27;Mercedes&#x27;, &#x27;Mini&#x27;, &#x27;Mitsubishi&#x27;, &#x27;Nissan&#x27;,\n",
1763
+ " &#x27;Renault&#x27;, &#x27;Skoda&#x27;, &#x27;Tata&#x27;, &#x27;Toyota&#x27;, &#x27;Volkswagen&#x27;, &#x27;Volvo&#x27;],\n",
1764
+ " dtype=object),\n",
1765
+ " array([&#x27;Diesel&#x27;, &#x27;LPG&#x27;, &#x27;Petrol&#x27;], dtype=object)])</pre></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-13\" type=\"checkbox\" ><label for=\"sk-estimator-id-13\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">remainder</label><div class=\"sk-toggleable__content\"><pre>[&#x27;year&#x27;, &#x27;kms_driven&#x27;]</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-14\" type=\"checkbox\" ><label for=\"sk-estimator-id-14\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">passthrough</label><div class=\"sk-toggleable__content\"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-15\" type=\"checkbox\" ><label for=\"sk-estimator-id-15\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LinearRegression</label><div class=\"sk-toggleable__content\"><pre>LinearRegression()</pre></div></div></div></div></div></div></div>"
1766
+ ]
1767
+ },
1768
+ "metadata": {},
1769
+ "execution_count": 41
1770
+ }
1771
+ ]
1772
+ },
1773
+ {
1774
+ "cell_type": "code",
1775
+ "source": [
1776
+ "y_pred=pipe.predict(x_test)"
1777
+ ],
1778
+ "metadata": {
1779
+ "id": "sGdoVcQ7uyL7"
1780
+ },
1781
+ "execution_count": null,
1782
+ "outputs": []
1783
+ },
1784
+ {
1785
+ "cell_type": "code",
1786
+ "source": [
1787
+ "r2_score(y_test,y_pred)"
1788
+ ],
1789
+ "metadata": {
1790
+ "colab": {
1791
+ "base_uri": "https://localhost:8080/"
1792
+ },
1793
+ "id": "w8Tj31iru6v-",
1794
+ "outputId": "6f411965-f819-45f4-f97d-28fcabaf1f2f"
1795
+ },
1796
+ "execution_count": null,
1797
+ "outputs": [
1798
+ {
1799
+ "output_type": "execute_result",
1800
+ "data": {
1801
+ "text/plain": [
1802
+ "0.4786019553698676"
1803
+ ]
1804
+ },
1805
+ "metadata": {},
1806
+ "execution_count": 44
1807
+ }
1808
+ ]
1809
+ },
1810
+ {
1811
+ "cell_type": "code",
1812
+ "source": [
1813
+ "r2_scores= []\n",
1814
+ "random_i=[]\n",
1815
+ "for i in range(500):\n",
1816
+ " x_train, x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=i)\n",
1817
+ " lr=LinearRegression()\n",
1818
+ " pipe=make_pipeline(column_trans,lr)\n",
1819
+ " pipe.fit(x_train,y_train)\n",
1820
+ " y_pred=pipe.predict(x_test)\n",
1821
+ " r2_scores.append(r2_score(y_test,y_pred))\n",
1822
+ " random_i.append(i)"
1823
+ ],
1824
+ "metadata": {
1825
+ "id": "Kdo3Pd9Wv2EE"
1826
+ },
1827
+ "execution_count": null,
1828
+ "outputs": []
1829
+ },
1830
+ {
1831
+ "cell_type": "code",
1832
+ "source": [
1833
+ "random_data= pd.DataFrame({'Score':r2_scores,'Random_value':random_i})"
1834
+ ],
1835
+ "metadata": {
1836
+ "id": "IO3IvSfVxsBj"
1837
+ },
1838
+ "execution_count": null,
1839
+ "outputs": []
1840
+ },
1841
+ {
1842
+ "cell_type": "code",
1843
+ "source": [
1844
+ "np.argmax(r2_scores)"
1845
+ ],
1846
+ "metadata": {
1847
+ "colab": {
1848
+ "base_uri": "https://localhost:8080/"
1849
+ },
1850
+ "id": "fChp9sltzzpj",
1851
+ "outputId": "3077a482-b60c-43da-a3f9-3b1f0fe1998c"
1852
+ },
1853
+ "execution_count": null,
1854
+ "outputs": [
1855
+ {
1856
+ "output_type": "execute_result",
1857
+ "data": {
1858
+ "text/plain": [
1859
+ "433"
1860
+ ]
1861
+ },
1862
+ "metadata": {},
1863
+ "execution_count": 54
1864
+ }
1865
+ ]
1866
+ },
1867
+ {
1868
+ "cell_type": "code",
1869
+ "source": [
1870
+ "r2_scores[433]"
1871
+ ],
1872
+ "metadata": {
1873
+ "colab": {
1874
+ "base_uri": "https://localhost:8080/"
1875
+ },
1876
+ "id": "bWaARfLmz6Yh",
1877
+ "outputId": "93925ab2-dffc-40d2-d1e2-87866b8b51bf"
1878
+ },
1879
+ "execution_count": null,
1880
+ "outputs": [
1881
+ {
1882
+ "output_type": "execute_result",
1883
+ "data": {
1884
+ "text/plain": [
1885
+ "0.8456515104452564"
1886
+ ]
1887
+ },
1888
+ "metadata": {},
1889
+ "execution_count": 55
1890
+ }
1891
+ ]
1892
+ },
1893
+ {
1894
+ "cell_type": "code",
1895
+ "source": [
1896
+ "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=np.argmax(r2_scores))\n",
1897
+ "lr=LinearRegression()\n",
1898
+ "pipe=make_pipeline(column_trans,lr)\n",
1899
+ "pipe.fit(x_train,y_train)\n",
1900
+ "y_pred=pipe.predict(x_test)\n",
1901
+ "r2_score(y_test,y_pred)"
1902
+ ],
1903
+ "metadata": {
1904
+ "colab": {
1905
+ "base_uri": "https://localhost:8080/"
1906
+ },
1907
+ "id": "JUb6oA4x0dTR",
1908
+ "outputId": "759bdbd3-ccc8-43c6-85f3-5d8ea4047482"
1909
+ },
1910
+ "execution_count": null,
1911
+ "outputs": [
1912
+ {
1913
+ "output_type": "execute_result",
1914
+ "data": {
1915
+ "text/plain": [
1916
+ "0.8456515104452564"
1917
+ ]
1918
+ },
1919
+ "metadata": {},
1920
+ "execution_count": 56
1921
+ }
1922
+ ]
1923
+ },
1924
+ {
1925
+ "cell_type": "code",
1926
+ "source": [
1927
+ "import pickle"
1928
+ ],
1929
+ "metadata": {
1930
+ "id": "R4j2B3Xx7Bm_"
1931
+ },
1932
+ "execution_count": null,
1933
+ "outputs": []
1934
+ },
1935
+ {
1936
+ "cell_type": "code",
1937
+ "source": [
1938
+ "pickle.dump(pipe,open('LinearRegressionModel.pkl','wb'))"
1939
+ ],
1940
+ "metadata": {
1941
+ "id": "JOTFnco_7H65"
1942
+ },
1943
+ "execution_count": null,
1944
+ "outputs": []
1945
+ },
1946
+ {
1947
+ "cell_type": "code",
1948
+ "source": [
1949
+ "pipe.predict(pd.DataFrame([['Maruti Suzuki Swift','Maruti',2019,100,'Petrol']],columns=['name','company','year','kms_driven','fuel_type']))"
1950
+ ],
1951
+ "metadata": {
1952
+ "colab": {
1953
+ "base_uri": "https://localhost:8080/"
1954
+ },
1955
+ "id": "L6PM14NG7ZWI",
1956
+ "outputId": "bc568fdb-bb40-436c-c6ce-caf4e9e19026"
1957
+ },
1958
+ "execution_count": null,
1959
+ "outputs": [
1960
+ {
1961
+ "output_type": "execute_result",
1962
+ "data": {
1963
+ "text/plain": [
1964
+ "array([459113.49353657])"
1965
+ ]
1966
+ },
1967
+ "metadata": {},
1968
+ "execution_count": 66
1969
+ }
1970
+ ]
1971
+ },
1972
+ {
1973
+ "cell_type": "code",
1974
+ "source": [],
1975
+ "metadata": {
1976
+ "id": "UKYqrC2n8ZzO"
1977
+ },
1978
+ "execution_count": null,
1979
+ "outputs": []
1980
+ }
1981
+ ]
1982
+ }
LinearRegressionModel.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7458627b95185a80cb137cfe4d335f586e9bb20fa840b4aee82d7a44b614307b
3
+ size 11316
application.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flask, pandas, sci-kit learn, pickle-mixin
2
+ from flask import Flask, render_template, request
3
+ import pandas as pd
4
+ import pickle
5
+ import sklearn
6
+ import numpy as np
7
+
8
+ app =Flask(__name__)
9
+
10
+ model = pickle.load(open('LinearRegressionModel.pkl','rb'))
11
+ car = pd.read_csv('cleaned car.csv')
12
+
13
+ @app.route('/')
14
+ def index():
15
+ companies = sorted(car['company'].unique())
16
+ car_models = sorted(car['name'].unique())
17
+ year = sorted(car['year'].unique(), reverse=True)
18
+ fuel_type = car['fuel_type'].unique()
19
+ companies.insert(0,'Select Company')
20
+ return render_template('index.html', companies=companies, car_models=car_models,years=year,fuel_types=fuel_type)
21
+
22
+ @app.route('/predict',methods=['POST'])
23
+ def predict():
24
+ company= request.form.get('company')
25
+ car_model = request.form.get('car_model')
26
+ year = int(request.form.get('year'))
27
+ fuel_type = request.form.get('fuel_type')
28
+ kms_driven = int(request.form.get('kilo_driven'))
29
+
30
+ prediction = model.predict(pd.DataFrame([[car_model, company,year,kms_driven,fuel_type]], columns=['name','company','year','kms_driven','fuel_type']))
31
+
32
+ return str(np.round(prediction[0],2))
33
+
34
+
35
+ if __name__=='__main__':
36
+ app.run(debug=True)
cleaned car.csv ADDED
@@ -0,0 +1,816 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,name,company,year,Price,kms_driven,fuel_type
2
+ 0,Hyundai Santro Xing,Hyundai,2007,80000,45000,Petrol
3
+ 1,Mahindra Jeep CL550,Mahindra,2006,425000,40,Diesel
4
+ 3,Hyundai Grand i10,Hyundai,2014,325000,28000,Petrol
5
+ 4,Ford EcoSport Titanium,Ford,2014,575000,36000,Diesel
6
+ 6,Ford Figo,Ford,2012,175000,41000,Diesel
7
+ 7,Hyundai Eon,Hyundai,2013,190000,25000,Petrol
8
+ 8,Ford EcoSport Ambiente,Ford,2016,830000,24530,Diesel
9
+ 9,Maruti Suzuki Alto,Maruti,2015,250000,60000,Petrol
10
+ 10,Skoda Fabia Classic,Skoda,2010,182000,60000,Petrol
11
+ 11,Maruti Suzuki Stingray,Maruti,2015,315000,30000,Petrol
12
+ 12,Hyundai Elite i20,Hyundai,2014,415000,32000,Petrol
13
+ 13,Mahindra Scorpio SLE,Mahindra,2015,320000,48660,Diesel
14
+ 14,Hyundai Santro Xing,Hyundai,2007,80000,45000,Petrol
15
+ 15,Mahindra Jeep CL550,Mahindra,2006,425000,40,Diesel
16
+ 16,Audi A8,Audi,2017,1000000,4000,Petrol
17
+ 17,Audi Q7,Audi,2014,500000,16934,Diesel
18
+ 18,Mahindra Scorpio S10,Mahindra,2016,350000,43000,Diesel
19
+ 19,Maruti Suzuki Alto,Maruti,2014,160000,35550,Petrol
20
+ 20,Mahindra Scorpio S10,Mahindra,2016,350000,43000,Diesel
21
+ 21,Mahindra Scorpio S10,Mahindra,2016,310000,39522,Diesel
22
+ 22,Maruti Suzuki Alto,Maruti,2015,75000,39000,Petrol
23
+ 23,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol
24
+ 24,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol
25
+ 25,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol
26
+ 26,Maruti Suzuki Alto,Maruti,2017,190000,72000,Petrol
27
+ 27,Maruti Suzuki Vitara,Maruti,2016,290000,15975,Diesel
28
+ 28,Maruti Suzuki Alto,Maruti,2008,95000,70000,Petrol
29
+ 29,Mahindra Bolero DI,Mahindra,2017,180000,23452,Diesel
30
+ 30,Maruti Suzuki Swift,Maruti,2014,385000,35522,Diesel
31
+ 31,Mahindra Scorpio S10,Mahindra,2015,250000,48508,Diesel
32
+ 32,Maruti Suzuki Swift,Maruti,2017,180000,15487,Petrol
33
+ 33,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
34
+ 34,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
35
+ 35,Toyota Innova 2.0,Toyota,2012,650000,82000,Diesel
36
+ 36,Renault Lodgy 85,Renault,2018,689999,20000,Diesel
37
+ 37,Skoda Yeti Ambition,Skoda,2012,448000,68000,Diesel
38
+ 38,Maruti Suzuki Baleno,Maruti,2017,549000,32000,Diesel
39
+ 39,Renault Duster 110,Renault,2012,501000,38000,Diesel
40
+ 40,Renault Duster 85,Renault,2013,489999,27000,Diesel
41
+ 41,Honda City 1.5,Honda,2011,280000,33000,Petrol
42
+ 42,Maruti Suzuki Alto,Maruti,2015,250000,60000,Petrol
43
+ 43,Maruti Suzuki Dzire,Maruti,2013,349999,46000,Diesel
44
+ 44,Honda Amaze,Honda,2013,284999,46000,Diesel
45
+ 45,Honda Amaze 1.5,Honda,2015,345000,36000,Diesel
46
+ 46,Honda City,Honda,2015,499999,55000,Petrol
47
+ 47,Datsun Redi GO,Datsun,2017,235000,16000,Petrol
48
+ 48,Maruti Suzuki SX4,Maruti,2010,249999,36000,Petrol
49
+ 49,Mitsubishi Pajero Sport,Mitsubishi,2015,1475000,47000,Diesel
50
+ 50,Mahindra Bolero DI,Mahindra,2017,180000,23452,Diesel
51
+ 51,Maruti Suzuki Swift,Maruti,2014,385000,35522,Diesel
52
+ 52,Mahindra Scorpio S10,Mahindra,2015,250000,48508,Diesel
53
+ 53,Maruti Suzuki Swift,Maruti,2017,180000,15487,Petrol
54
+ 54,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
55
+ 55,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
56
+ 56,Mahindra Scorpio S10,Mahindra,2015,395000,35000,Diesel
57
+ 57,Maruti Suzuki Swift,Maruti,2017,220000,30874,Petrol
58
+ 58,Honda City ZX,Honda,2017,170000,15000,Diesel
59
+ 59,Maruti Suzuki Wagon,Maruti,2013,85000,29685,Petrol
60
+ 60,Ford Figo,Ford,2012,175000,41000,Diesel
61
+ 61,Hyundai Eon,Hyundai,2013,190000,25000,Petrol
62
+ 62,Tata Indigo eCS,Tata,2017,200000,130000,Diesel
63
+ 63,Ford EcoSport Ambiente,Ford,2016,830000,24530,Diesel
64
+ 64,Tata Indigo eCS,Tata,2017,200000,130000,Diesel
65
+ 65,Mahindra Scorpio SLE,Mahindra,2012,570000,19000,Diesel
66
+ 66,Volkswagen Polo Highline,Volkswagen,2014,315000,60000,Petrol
67
+ 67,Skoda Fabia Classic,Skoda,2010,182000,60000,Petrol
68
+ 68,Maruti Suzuki Stingray,Maruti,2015,315000,30000,Petrol
69
+ 70,Chevrolet Spark LS,Chevrolet,2010,110000,41000,Petrol
70
+ 71,Renault Duster 110PS,Renault,2012,501000,35000,Diesel
71
+ 72,Honda City,Honda,2015,448999,54000,Petrol
72
+ 73,Mini Cooper S,Mini,2013,1891111,13000,Petrol
73
+ 74,Datsun Redi GO,Datsun,2017,235000,16000,Petrol
74
+ 75,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel
75
+ 76,Honda Amaze,Honda,2015,344999,22000,Petrol
76
+ 77,Honda Amaze,Honda,2015,344999,22000,Petrol
77
+ 78,Renault Duster,Renault,2014,449999,50000,Diesel
78
+ 79,Mini Cooper S,Mini,2013,1891111,13500,Petrol
79
+ 80,Mahindra Scorpio S4,Mahindra,2015,865000,30000,Diesel
80
+ 81,Mahindra Scorpio VLX,Mahindra,2014,699000,50000,Diesel
81
+ 82,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel
82
+ 83,Ford EcoSport,Ford,2017,489999,39000,Petrol
83
+ 84,Honda Brio,Honda,2012,224999,30000,Petrol
84
+ 86,Volkswagen Vento Highline,Volkswagen,2019,1200000,3600,Diesel
85
+ 87,Hyundai i20 Magna,Hyundai,2009,195000,32000,Petrol
86
+ 88,Toyota Corolla Altis,Toyota,2010,351000,38000,Diesel
87
+ 89,Hyundai Verna Transform,Hyundai,2008,160000,45000,Petrol
88
+ 90,Toyota Corolla Altis,Toyota,2009,240000,35000,Petrol
89
+ 91,Honda City 1.5,Honda,2005,90000,50000,Petrol
90
+ 92,Hyundai Elite i20,Hyundai,2014,415000,32000,Petrol
91
+ 93,Skoda Fabia 1.2L,Skoda,2011,155000,45863,Diesel
92
+ 94,BMW 3 Series,BMW,2011,600000,60500,Petrol
93
+ 95,Maruti Suzuki A,Maruti,2011,189500,12500,Petrol
94
+ 96,Toyota Etios GD,Toyota,2013,350000,60000,Diesel
95
+ 97,Ford Figo Diesel,Ford,2012,210000,35000,Diesel
96
+ 98,Maruti Suzuki Swift,Maruti,2014,390000,35000,Petrol
97
+ 99,Chevrolet Beat LT,Chevrolet,2012,135000,45000,Diesel
98
+ 100,BMW 7 Series,BMW,2009,1600000,35000,Petrol
99
+ 101,Mahindra XUV500 W8,Mahindra,2013,701000,38000,Diesel
100
+ 102,Hyundai i10 Magna,Hyundai,2014,265000,18000,Petrol
101
+ 103,Hyundai Verna Fluidic,Hyundai,2015,525000,35000,Diesel
102
+ 104,Maruti Suzuki Swift,Maruti,2013,372000,13349,Petrol
103
+ 105,Maruti Suzuki Ertiga,Maruti,2016,635000,29000,Petrol
104
+ 106,Ford EcoSport Titanium,Ford,2014,550000,44000,Diesel
105
+ 107,Maruti Suzuki Ertiga,Maruti,2016,575000,29000,Petrol
106
+ 108,Maruti Suzuki Ertiga,Maruti,2013,485000,42000,Diesel
107
+ 109,Maruti Suzuki Alto,Maruti,2012,155000,14000,Petrol
108
+ 110,Hyundai Grand i10,Hyundai,2014,345000,49000,Diesel
109
+ 111,Honda Amaze 1.2,Honda,2014,325000,42000,Petrol
110
+ 112,Hyundai i20 Asta,Hyundai,2012,329500,36200,Diesel
111
+ 113,Ford Figo Diesel,Ford,2014,195000,50000,Diesel
112
+ 114,Maruti Suzuki Eeco,Maruti,2015,251111,55000,Petrol
113
+ 115,Maruti Suzuki Ertiga,Maruti,2014,569999,45000,Petrol
114
+ 116,Maruti Suzuki Esteem,Maruti,2007,69999,51000,Petrol
115
+ 117,Maruti Suzuki Ritz,Maruti,2014,299999,19000,Petrol
116
+ 118,Maruti Suzuki Dzire,Maruti,2009,220000,46000,Petrol
117
+ 119,Maruti Suzuki Ritz,Maruti,2013,399999,33000,Diesel
118
+ 120,Maruti Suzuki Swift,Maruti,2013,372000,13349,Petrol
119
+ 121,Maruti Suzuki Dzire,Maruti,2015,450000,104000,Diesel
120
+ 122,Toyota Etios Liva,Toyota,2014,270000,55000,Petrol
121
+ 123,Hyundai i20 Sportz,Hyundai,2011,350000,33333,Diesel
122
+ 124,Chevrolet Spark,Chevrolet,2012,158400,33600,Petrol
123
+ 125,Maruti Suzuki Alto,Maruti,2017,350000,5600,Petrol
124
+ 126,Nissan Micra XV,Nissan,2011,179000,41000,Petrol
125
+ 127,Maruti Suzuki Swift,Maruti,2007,125000,70000,Petrol
126
+ 128,Maruti Suzuki Alto,Maruti,2018,200000,7500,Petrol
127
+ 129,Honda Amaze 1.5,Honda,2013,299000,45000,Diesel
128
+ 130,Maruti Suzuki Alto,Maruti,2015,220000,38000,Petrol
129
+ 131,Chevrolet Beat,Chevrolet,2015,150000,30000,Petrol
130
+ 133,Honda City 1.5,Honda,2010,285000,35000,Petrol
131
+ 134,Ford EcoSport Trend,Ford,2016,830000,24330,Diesel
132
+ 135,Hyundai i20 Asta,Hyundai,2009,210000,65480,Petrol
133
+ 136,Maruti Suzuki Swift,Maruti,2013,340000,41000,Petrol
134
+ 137,Tata Indica V2,Tata,2006,90000,20000,Petrol
135
+ 139,Hindustan Motors Ambassador,Hindustan,2000,70000,200000,Diesel
136
+ 140,Toyota Corolla Altis,Toyota,2010,289999,70000,Petrol
137
+ 141,Toyota Corolla Altis,Toyota,2012,349999,59000,Petrol
138
+ 142,Toyota Innova 2.5,Toyota,2012,849999,99000,Diesel
139
+ 143,Volkswagen Jetta Highline,Volkswagen,2014,749999,46000,Diesel
140
+ 144,Volkswagen Polo Comfortline,Volkswagen,2015,399999,2800,Petrol
141
+ 145,Volkswagen Polo,Volkswagen,2014,274999,32000,Petrol
142
+ 146,Mahindra Scorpio,Mahindra,2015,984999,22000,Diesel
143
+ 147,Renault Duster,Renault,2014,449999,50000,Diesel
144
+ 148,Honda Amaze,Honda,2015,344999,22000,Petrol
145
+ 149,Nissan Sunny,Nissan,2012,224999,45000,Petrol
146
+ 150,Hyundai Elite i20,Hyundai,2018,599999,21000,Petrol
147
+ 151,Renault Kwid,Renault,2016,244999,11000,Petrol
148
+ 152,Renault Duster,Renault,2013,399999,41000,Diesel
149
+ 153,Ford EcoSport,Ford,2017,489999,39000,Petrol
150
+ 154,Renault Duster,Renault,2014,474999,50000,Diesel
151
+ 155,Mahindra Scorpio VLX,Mahindra,2011,499999,66000,Diesel
152
+ 156,Maruti Suzuki Alto,Maruti,2018,310000,3000,Petrol
153
+ 157,Chevrolet Spark LT,Chevrolet,2010,85000,45000,Petrol
154
+ 158,Datsun Redi GO,Datsun,2016,245000,7000,Petrol
155
+ 159,Maruti Suzuki Swift,Maruti,2010,189500,38500,Diesel
156
+ 160,Fiat Punto Emotion,Fiat,2012,169500,37200,Diesel
157
+ 161,Maruti Suzuki Swift,Maruti,2010,159500,43200,Diesel
158
+ 162,Toyota Etios GD,Toyota,2013,275000,24800,Petrol
159
+ 163,Hyundai i20 Sportz,Hyundai,2014,370000,60000,Diesel
160
+ 164,Hyundai i10 Sportz,Hyundai,2010,168000,45872,Petrol
161
+ 165,Chevrolet Beat LT,Chevrolet,2011,150000,40000,Diesel
162
+ 166,Chevrolet Beat LS,Chevrolet,2011,145000,45000,Diesel
163
+ 167,Chevrolet Beat LT,Chevrolet,2012,98500,38000,Diesel
164
+ 168,Mahindra Scorpio VLX,Mahindra,2014,699000,50000,Diesel
165
+ 169,Tata Indigo CS,Tata,2011,85000,11400,Diesel
166
+ 170,Toyota Corolla Altis,Toyota,2015,575000,42000,Petrol
167
+ 171,Honda City 1.5,Honda,2014,549000,39000,Petrol
168
+ 172,Maruti Suzuki Swift,Maruti,2011,209000,47000,Diesel
169
+ 173,Hyundai Eon Era,Hyundai,2013,185000,27000,Petrol
170
+ 174,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
171
+ 175,Mahindra XUV500,Mahindra,2014,699999,52000,Diesel
172
+ 176,Honda Brio,Honda,2012,224999,30000,Petrol
173
+ 177,Ford Fiesta,Ford,2011,274999,55000,Diesel
174
+ 178,Honda Amaze,Honda,2013,284999,46000,Diesel
175
+ 179,Honda City,Honda,2015,599999,30000,Diesel
176
+ 180,Maruti Suzuki Wagon,Maruti,2012,199999,44000,Petrol
177
+ 181,Honda City,Honda,2014,544999,45000,Diesel
178
+ 182,Hyundai i20,Hyundai,2009,199000,31000,Petrol
179
+ 183,Tata Indigo eCS,Tata,2016,320000,175430,Diesel
180
+ 184,Hyundai Fluidic Verna,Hyundai,2015,540000,38000,Diesel
181
+ 186,Mahindra Quanto C8,Mahindra,2013,340000,37000,Diesel
182
+ 187,Fiat Petra ELX,Fiat,2008,75000,65000,Petrol
183
+ 188,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel
184
+ 189,Mini Cooper S,Mini,2013,1891111,13000,Petrol
185
+ 190,Hyundai Santro Xing,Hyundai,2005,49000,7500,Petrol
186
+ 191,Maruti Suzuki Ciaz,Maruti,2016,700000,3350,Petrol
187
+ 192,Maruti Suzuki Zen,Maruti,2000,55000,60000,Petrol
188
+ 193,Honda City,Honda,2015,448999,54000,Petrol
189
+ 194,Hyundai Creta 1.6,Hyundai,2017,895000,32000,Petrol
190
+ 196,Mahindra Scorpio SLX,Mahindra,2007,355000,75000,Diesel
191
+ 197,Mahindra Scorpio SLE,Mahindra,2012,565000,62000,Diesel
192
+ 198,Toyota Innova 2.5,Toyota,2006,365000,73000,Diesel
193
+ 199,Maruti Suzuki Alto,Maruti,2011,145000,41000,Petrol
194
+ 200,Maruti Suzuki Wagon,Maruti,2011,210000,35000,Petrol
195
+ 201,Tata Nano Cx,Tata,2013,40000,2200,Petrol
196
+ 202,Maruti Suzuki Alto,Maruti,2013,125000,39000,Petrol
197
+ 203,Maruti Suzuki Wagon,Maruti,2009,135000,45000,Petrol
198
+ 204,Maruti Suzuki Swift,Maruti,2006,135000,45000,Petrol
199
+ 205,Tata Sumo Victa,Tata,2012,285000,65000,Diesel
200
+ 207,Maruti Suzuki Wagon,Maruti,2010,145000,54870,Petrol
201
+ 208,Maruti Suzuki Alto,Maruti,2010,135000,34580,Petrol
202
+ 209,Volkswagen Passat Diesel,Volkswagen,2009,450000,97000,Diesel
203
+ 210,Renault Scala RxL,Renault,2015,375000,25000,Diesel
204
+ 211,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel
205
+ 212,Hyundai Grand i10,Hyundai,2014,365000,20000,Petrol
206
+ 213,Hyundai i20 Active,Hyundai,2015,500000,18000,Petrol
207
+ 214,Mahindra Xylo E4,Mahindra,2012,400000,35000,Diesel
208
+ 215,Mahindra Jeep MM,Mahindra,2019,390000,60,Diesel
209
+ 216,Renault Duster 110PS,Renault,2012,501000,35000,Diesel
210
+ 217,Mahindra Bolero SLE,Mahindra,2013,330000,80200,Diesel
211
+ 218,Force Motors Force,Force,2015,580000,3200,Diesel
212
+ 219,Maruti Suzuki SX4,Maruti,2012,265000,46000,Diesel
213
+ 220,Mahindra Jeep CL550,Mahindra,2019,379000,0,Diesel
214
+ 221,Maruti Suzuki Alto,Maruti,2015,219000,5000,Petrol
215
+ 222,Mahindra Jeep CL550,Mahindra,2018,385000,588,Diesel
216
+ 223,Toyota Etios,Toyota,2011,275000,36000,Diesel
217
+ 224,Volkswagen Polo,Volkswagen,2015,330000,38000,Diesel
218
+ 225,Honda City ZX,Honda,2008,110000,45000,Petrol
219
+ 226,Maruti Suzuki Wagon,Maruti,2006,80000,71200,Petrol
220
+ 227,Honda City VX,Honda,2016,519000,52000,Diesel
221
+ 228,Mahindra Thar CRDe,Mahindra,2016,730000,29000,Diesel
222
+ 229,Mitsubishi Pajero Sport,Mitsubishi,2015,1475000,47000,Diesel
223
+ 230,Audi A4 1.8,Audi,2009,699000,47000,Petrol
224
+ 231,Mercedes Benz GLA,Mercedes,2015,2000000,20000,Diesel
225
+ 232,Land Rover Freelander,Land,2015,2100000,30000,Diesel
226
+ 233,Renault Kwid RXT,Renault,2017,340000,5000,Petrol
227
+ 234,Tata Aria Pleasure,Tata,2014,390000,35000,Diesel
228
+ 235,Mercedes Benz B,Mercedes,2014,1400000,31000,Petrol
229
+ 236,Datsun GO T,Datsun,2016,245000,7000,Petrol
230
+ 237,Tata Indigo eCS,Tata,2016,320000,175430,Diesel
231
+ 238,Tata Indigo eCS,Tata,2016,320000,175400,Diesel
232
+ 239,Honda Jazz VX,Honda,2016,450000,41000,Petrol
233
+ 240,Honda Amaze 1.2,Honda,2014,311000,33000,Petrol
234
+ 241,Honda Amaze,Honda,2013,284999,46000,Diesel
235
+ 242,Honda City,Honda,2012,399999,45000,Petrol
236
+ 243,Honda City,Honda,2015,599999,39000,Diesel
237
+ 244,Honda Amaze,Honda,2015,344999,22000,Petrol
238
+ 245,Audi A4 1.8,Audi,2009,699000,47000,Petrol
239
+ 246,Force Motors Force,Force,2015,580000,3200,Diesel
240
+ 247,Mahindra Scorpio S4,Mahindra,2015,855000,30000,Diesel
241
+ 248,Hyundai i20 Active,Hyundai,2015,535000,37000,Diesel
242
+ 249,Mini Cooper S,Mini,2013,1891111,13000,Petrol
243
+ 250,Maruti Suzuki Ciaz,Maruti,2017,699000,14000,Petrol
244
+ 251,Chevrolet Tavera Neo,Chevrolet,2013,375000,55000,Diesel
245
+ 252,Honda Amaze,Honda,2013,284999,46000,Diesel
246
+ 253,Hyundai Eon Sportz,Hyundai,2012,178000,30000,Petrol
247
+ 254,Tata Sumo Gold,Tata,2013,300000,50000,Diesel
248
+ 255,Maruti Suzuki Wagon,Maruti,2003,90000,45000,Petrol
249
+ 256,Maruti Suzuki Esteem,Maruti,2006,95000,45000,Petrol
250
+ 257,Maruti Suzuki Eeco,Maruti,2015,255000,9300,Petrol
251
+ 258,Chevrolet Enjoy 1.4,Chevrolet,2013,245000,55000,Diesel
252
+ 259,Hyundai i20 Asta,Hyundai,2012,329500,36200,Diesel
253
+ 260,Ford Figo Diesel,Ford,2014,195000,50000,Diesel
254
+ 261,Maruti Suzuki Eeco,Maruti,2015,251111,55000,Petrol
255
+ 262,Maruti Suzuki Ertiga,Maruti,2014,569999,45000,Petrol
256
+ 263,Maruti Suzuki Esteem,Maruti,2007,69999,51000,Petrol
257
+ 264,Maruti Suzuki Ritz,Maruti,2014,299999,19000,Petrol
258
+ 265,Maruti Suzuki Dzire,Maruti,2009,220000,46000,Petrol
259
+ 266,Maruti Suzuki Ritz,Maruti,2013,399999,33000,Diesel
260
+ 267,Maruti Suzuki SX4,Maruti,2010,249999,36000,Petrol
261
+ 268,Maruti Suzuki Wagon,Maruti,2015,289999,22000,Petrol
262
+ 269,Mini Cooper S,Mini,2013,1891111,13500,Petrol
263
+ 270,Nissan Terrano XL,Nissan,2015,499999,60000,Diesel
264
+ 271,Renault Duster 85,Renault,2013,489999,27000,Diesel
265
+ 272,Renault Duster 85,Renault,2014,489999,59000,Diesel
266
+ 273,Renault Duster 85,Renault,2015,549999,19000,Diesel
267
+ 274,Maruti Suzuki Dzire,Maruti,2013,380000,30000,Petrol
268
+ 275,Renault Kwid RXT,Renault,2018,325000,15000,Petrol
269
+ 276,Maruti Suzuki Maruti,Maruti,2003,57000,56758,Petrol
270
+ 277,Renault Kwid 1.0,Renault,2018,349999,10000,Petrol
271
+ 278,Renault Lodgy 85,Renault,2018,689999,20000,Diesel
272
+ 279,Renault Scala RxL,Renault,2014,349999,49000,Diesel
273
+ 280,Hyundai Grand i10,Hyundai,2014,410000,41000,Petrol
274
+ 281,Maruti Suzuki Swift,Maruti,2011,225000,45000,Petrol
275
+ 282,Chevrolet Beat LS,Chevrolet,2010,120000,43000,Petrol
276
+ 283,Tata Indigo eCS,Tata,2016,320000,175430,Diesel
277
+ 284,Hyundai Santro Xing,Hyundai,2000,59000,56450,Petrol
278
+ 285,Hyundai Fluidic Verna,Hyundai,2015,540000,38000,Diesel
279
+ 287,Chevrolet Beat LS,Chevrolet,2010,80000,56000,Petrol
280
+ 288,Mahindra Quanto C8,Mahindra,2013,340000,37000,Diesel
281
+ 289,Fiat Petra ELX,Fiat,2008,75000,65000,Petrol
282
+ 290,Chevrolet Beat LS,Chevrolet,2015,220000,32700,Petrol
283
+ 291,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel
284
+ 292,Ford EcoSport Titanium,Ford,2016,599000,30000,Diesel
285
+ 293,Hyundai Accent GLX,Hyundai,2006,80000,56000,Petrol
286
+ 296,Mahindra TUV300 T4,Mahindra,2016,675000,9000,Diesel
287
+ 297,Mini Cooper S,Mini,2013,1891111,13000,Petrol
288
+ 298,Mini Cooper S,Mini,2013,1891111,13000,Petrol
289
+ 299,Tata Indica V2,Tata,2008,150000,11000,Petrol
290
+ 300,Mini Cooper S,Mini,2013,1891111,13000,Petrol
291
+ 301,Tata Indigo CS,Tata,2009,72500,46000,Diesel
292
+ 302,Maruti Suzuki Swift,Maruti,2019,610000,73,Petrol
293
+ 303,Mahindra Scorpio VLX,Mahindra,2004,230000,160000,Diesel
294
+ 305,Honda Accord,Honda,2009,175000,58559,Petrol
295
+ 306,Mahindra Scorpio S4,Mahindra,2015,855000,30000,Diesel
296
+ 307,Chevrolet Tavera Neo,Chevrolet,2013,375000,55000,Diesel
297
+ 308,Ford EcoSport Titanium,Ford,2014,520000,57000,Diesel
298
+ 309,Maruti Suzuki Ertiga,Maruti,2015,524999,50000,Diesel
299
+ 310,Honda Amaze,Honda,2014,299999,37000,Petrol
300
+ 311,Maruti Suzuki Dzire,Maruti,2012,299999,40000,Petrol
301
+ 312,Honda City,Honda,2011,284999,55000,Petrol
302
+ 313,Mahindra Scorpio 2.6,Mahindra,2007,220000,170000,Diesel
303
+ 314,Maruti Suzuki Dzire,Maruti,2014,424999,55000,Diesel
304
+ 315,Honda City,Honda,2015,644999,39000,Petrol
305
+ 316,Honda Mobilio,Honda,2014,399999,44000,Petrol
306
+ 317,Toyota Corolla Altis,Toyota,2009,199999,65000,Petrol
307
+ 318,Honda City,Honda,2014,584999,39000,Petrol
308
+ 319,Skoda Laura,Skoda,2012,349999,44000,Diesel
309
+ 320,Renault Duster,Renault,2015,449999,49000,Diesel
310
+ 321,Maruti Suzuki Ertiga,Maruti,2018,799999,9000,Diesel
311
+ 322,Maruti Suzuki Dzire,Maruti,2015,444999,45000,Diesel
312
+ 323,Mahindra XUV500,Mahindra,2014,649999,47000,Diesel
313
+ 324,Hyundai Verna Fluidic,Hyundai,2012,444999,40000,Diesel
314
+ 325,Maruti Suzuki Vitara,Maruti,2016,689999,29000,Diesel
315
+ 326,Maruti Suzuki Wagon,Maruti,2016,344999,15000,Petrol
316
+ 327,Mahindra Scorpio,Mahindra,2015,944999,45000,Diesel
317
+ 328,Honda Amaze,Honda,2014,274999,35000,Petrol
318
+ 329,Mahindra XUV500,Mahindra,2013,689999,80000,Diesel
319
+ 330,Mahindra Scorpio,Mahindra,2013,574999,68000,Diesel
320
+ 331,Skoda Laura,Skoda,2013,374999,50000,Diesel
321
+ 332,Volkswagen Polo,Volkswagen,2010,199999,60000,Diesel
322
+ 333,Hyundai Elite i20,Hyundai,2016,549999,9000,Petrol
323
+ 334,Tata Manza Aura,Tata,2012,130000,72000,Diesel
324
+ 335,Chevrolet Sail UVA,Chevrolet,2013,210000,60000,Petrol
325
+ 336,Renault Duster 110,Renault,2012,501000,38000,Diesel
326
+ 337,Hyundai Verna Fluidic,Hyundai,2013,401000,45000,Diesel
327
+ 338,Audi A4 2.0,Audi,2012,1350000,40000,Diesel
328
+ 339,Hyundai Elantra SX,Hyundai,2013,600000,20000,Petrol
329
+ 340,Mahindra Scorpio VLX,Mahindra,2013,610000,35000,Diesel
330
+ 341,Mahindra KUV100 K8,Mahindra,2016,400000,20000,Diesel
331
+ 342,Renault Scala RxL,Renault,2015,375000,25000,Diesel
332
+ 343,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel
333
+ 344,Hyundai Grand i10,Hyundai,2014,365000,20000,Petrol
334
+ 345,Hyundai i20 Active,Hyundai,2015,500000,18000,Petrol
335
+ 346,Mahindra Xylo E4,Mahindra,2012,400000,35000,Diesel
336
+ 347,Hyundai Grand i10,Hyundai,2017,524999,6821,Petrol
337
+ 348,Hyundai i20,Hyundai,2014,449999,23000,Petrol
338
+ 349,Hyundai Eon,Hyundai,2014,174999,14000,Petrol
339
+ 350,Hyundai i10,Hyundai,2012,244999,38000,Petrol
340
+ 351,Hyundai i20 Active,Hyundai,2015,574999,35000,Diesel
341
+ 352,Datsun Redi GO,Datsun,2017,244999,22000,Petrol
342
+ 353,Toyota Etios Liva,Toyota,2011,239999,41000,Petrol
343
+ 354,Hyundai Accent,Hyundai,2010,99999,45000,Petrol
344
+ 355,Hyundai Verna,Hyundai,2014,489999,44000,Diesel
345
+ 356,Maruti Suzuki Swift,Maruti,2013,324999,45000,Diesel
346
+ 357,Toyota Fortuner,Toyota,2011,1074999,52000,Diesel
347
+ 358,Hyundai i10 Sportz,Hyundai,2012,230000,34000,Petrol
348
+ 359,Mahindra Bolero Power,Mahindra,2018,699000,1800,Diesel
349
+ 361,Mahindra XUV500,Mahindra,2015,1000000,15000,Diesel
350
+ 362,Honda City 1.5,Honda,2010,240000,400000,Petrol
351
+ 363,Chevrolet Spark LT,Chevrolet,2009,110000,44000,Petrol
352
+ 364,Mahindra Jeep MM,Mahindra,2019,390000,60,Diesel
353
+ 365,Renault Duster 110PS,Renault,2012,501000,35000,Diesel
354
+ 366,Mahindra XUV500,Mahindra,2016,1130000,72000,Diesel
355
+ 367,Tata Indigo eCS,Tata,2014,250000,40000,Diesel
356
+ 369,Mahindra Bolero SLE,Mahindra,2013,330000,80200,Diesel
357
+ 370,Force Motors Force,Force,2015,580000,3200,Diesel
358
+ 371,Skoda Rapid Elegance,Skoda,2013,340000,48000,Diesel
359
+ 372,Tata Vista Quadrajet,Tata,2011,120000,90000,Diesel
360
+ 373,Maruti Suzuki Alto,Maruti,2015,265000,12000,Petrol
361
+ 374,Maruti Suzuki SX4,Maruti,2012,265000,46000,Diesel
362
+ 375,Maruti Suzuki Zen,Maruti,2003,85000,69900,Petrol
363
+ 376,Mahindra Jeep CL550,Mahindra,2019,379000,0,Diesel
364
+ 377,Hyundai i10 Magna,Hyundai,2011,175000,45000,Petrol
365
+ 378,Maruti Suzuki Alto,Maruti,2015,219000,5000,Petrol
366
+ 379,Maruti Suzuki Swift,Maruti,2016,350000,166000,Diesel
367
+ 380,Honda City ZX,Honda,2008,149000,42000,Petrol
368
+ 381,Mahindra Jeep CL550,Mahindra,2018,385000,588,Diesel
369
+ 382,Mahindra Jeep MM,Mahindra,2006,425000,122,Diesel
370
+ 383,Chevrolet Beat Diesel,Chevrolet,2017,150000,62000,Diesel
371
+ 384,Honda City 1.5,Honda,2010,225000,70000,Petrol
372
+ 386,Hyundai Verna 1.4,Hyundai,2014,375000,36000,Petrol
373
+ 387,Toyota Innova 2.5,Toyota,2012,770000,0,Diesel
374
+ 389,Maruti Suzuki Maruti,Maruti,1995,30000,55000,Petrol
375
+ 390,Toyota Etios,Toyota,2011,275000,36000,Diesel
376
+ 391,Volkswagen Polo,Volkswagen,2015,330000,38000,Diesel
377
+ 392,Maruti Suzuki Swift,Maruti,2014,335000,55000,Diesel
378
+ 393,Hyundai Elite i20,Hyundai,2015,450000,20000,Diesel
379
+ 394,Maruti Suzuki Swift,Maruti,2012,225000,40000,Petrol
380
+ 396,Maruti Suzuki Versa,Maruti,2004,80000,50000,Petrol
381
+ 397,Tata Indigo LX,Tata,2016,130000,104000,Diesel
382
+ 398,Volkswagen Vento Konekt,Volkswagen,2011,245000,65000,Diesel
383
+ 399,Mercedes Benz C,Mercedes,2002,399000,41000,Petrol
384
+ 400,Maruti Suzuki Ertiga,Maruti,2013,450000,90000,Diesel
385
+ 402,Honda City,Honda,2000,65000,80000,Petrol
386
+ 403,Hyundai Santro Xing,Hyundai,2006,75000,46000,Petrol
387
+ 404,Maruti Suzuki Omni,Maruti,2001,70000,70000,Petrol
388
+ 405,Hyundai Sonata Transform,Hyundai,2017,190000,36469,Diesel
389
+ 406,Hyundai Elite i20,Hyundai,2018,600000,7800,Petrol
390
+ 407,Volkswagen Vento Konekt,Volkswagen,2011,245000,65000,Diesel
391
+ 408,Maruti Suzuki Alto,Maruti,2017,240000,60000,Petrol
392
+ 409,Maruti Suzuki Alto,Maruti,2011,155000,32000,Petrol
393
+ 410,Honda Jazz S,Honda,2009,169999,24695,Petrol
394
+ 411,Hyundai Grand i10,Hyundai,2017,450000,15141,Petrol
395
+ 412,Maruti Suzuki Zen,Maruti,2001,40000,40000,Petrol
396
+ 413,Mahindra Scorpio W,Mahindra,2012,165000,65000,Diesel
397
+ 415,Maruti Suzuki Alto,Maruti,2014,270000,22000,Petrol
398
+ 416,Hyundai Grand i10,Hyundai,2016,280000,59910,Diesel
399
+ 417,Mahindra XUV500 W8,Mahindra,2012,560000,100000,Diesel
400
+ 418,Hyundai Creta 1.6,Hyundai,2016,950000,25000,Petrol
401
+ 419,Hyundai i20 Magna,Hyundai,2013,310000,35000,Petrol
402
+ 420,Renault Duster 85,Renault,2015,715000,65000,Diesel
403
+ 421,Hyundai Grand i10,Hyundai,2014,340000,35000,Petrol
404
+ 422,Honda Brio V,Honda,2012,235000,33000,Petrol
405
+ 423,Mahindra TUV300 T4,Mahindra,2017,610000,68000,Diesel
406
+ 424,Chevrolet Spark LS,Chevrolet,2010,95000,23000,Petrol
407
+ 425,Mahindra TUV300 T8,Mahindra,2018,1000000,4500,Diesel
408
+ 426,Maruti Suzuki Swift,Maruti,2015,220000,129000,Diesel
409
+ 427,Nissan X Trail,Nissan,2019,1200000,300,Diesel
410
+ 428,Maruti Suzuki Alto,Maruti,2015,230000,5000,Petrol
411
+ 429,Ford Ikon 1.3,Ford,2001,45000,65000,Petrol
412
+ 430,Toyota Fortuner 3.0,Toyota,2010,940000,131000,Diesel
413
+ 431,Tata Manza ELAN,Tata,2010,155555,111111,Petrol
414
+ 434,Mercedes Benz A,Mercedes,2013,1500000,14000,Petrol
415
+ 435,Chevrolet Beat LS,Chevrolet,2016,210000,22000,Diesel
416
+ 436,Ford EcoSport Trend,Ford,2013,495000,38000,Diesel
417
+ 437,Tata Indigo LS,Tata,2016,125000,70000,Diesel
418
+ 438,Hyundai i20 Magna,Hyundai,2010,195000,36000,Petrol
419
+ 439,Volkswagen Vento Highline,Volkswagen,2015,550000,34000,Diesel
420
+ 440,Renault Kwid RXT,Renault,2015,270000,43000,Petrol
421
+ 442,Ford EcoSport Titanium,Ford,2014,500000,40000,Diesel
422
+ 443,Honda Amaze 1.5,Honda,2016,240000,160000,Diesel
423
+ 444,Hyundai Verna 1.6,Hyundai,2017,800000,12000,Petrol
424
+ 445,BMW 5 Series,BMW,2011,1299000,49000,Diesel
425
+ 446,Skoda Superb 1.8,Skoda,2011,530000,68000,Petrol
426
+ 447,Audi Q3 2.0,Audi,2013,1499000,37000,Diesel
427
+ 448,Mahindra Bolero DI,Mahindra,2012,220000,59466,Diesel
428
+ 450,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
429
+ 451,Ford Figo Duratorq,Ford,2012,250000,99000,Diesel
430
+ 452,Maruti Suzuki Wagon,Maruti,2018,395000,25500,Petrol
431
+ 453,Mahindra Logan Diesel,Mahindra,2009,130000,66000,Petrol
432
+ 454,Tata Nano GenX,Tata,2010,32000,44005,Petrol
433
+ 455,Mahindra TUV300 T4,Mahindra,2016,540000,35000,Diesel
434
+ 456,Mahindra TUV300 T4,Mahindra,2016,540000,35000,Diesel
435
+ 457,Hyundai Elite i20,Hyundai,2015,405000,28000,Petrol
436
+ 458,Hyundai Elite i20,Hyundai,2015,400000,30000,Petrol
437
+ 459,Honda City SV,Honda,2017,760000,4000,Petrol
438
+ 460,Maruti Suzuki Baleno,Maruti,2016,500000,28000,Petrol
439
+ 461,Ford Figo Petrol,Ford,2011,175000,75000,Petrol
440
+ 462,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
441
+ 463,Honda City,Honda,2017,750000,3000,Petrol
442
+ 464,Hyundai Elite i20,Hyundai,2015,419000,20000,Petrol
443
+ 465,Maruti Suzuki Versa,Maruti,2004,90000,50000,Petrol
444
+ 466,Hyundai Eon Era,Hyundai,2018,140000,2110,Petrol
445
+ 467,Mitsubishi Pajero Sport,Mitsubishi,2015,1540000,43222,Petrol
446
+ 468,Hyundai i10 Magna,Hyundai,2008,275000,100200,Petrol
447
+ 469,Toyota Corolla H2,Toyota,2003,150000,100000,Petrol
448
+ 470,Maruti Suzuki Swift,Maruti,2011,230000,65,Petrol
449
+ 471,Tata Indigo CS,Tata,2015,123000,100000,Diesel
450
+ 472,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
451
+ 473,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
452
+ 474,Hyundai Xcent Base,Hyundai,2016,300000,140000,Diesel
453
+ 475,Honda City,Honda,2015,499999,55000,Petrol
454
+ 476,Hyundai Accent Executive,Hyundai,2009,165000,48000,Petrol
455
+ 477,Maruti Suzuki Baleno,Maruti,2016,498000,22000,Petrol
456
+ 478,Tata Zest XE,Tata,2018,480000,103553,Diesel
457
+ 479,Maruti Suzuki Dzire,Maruti,2017,488000,80000,Diesel
458
+ 480,Tata Sumo Gold,Tata,2014,250000,99000,Diesel
459
+ 481,Toyota Corolla Altis,Toyota,2010,220000,58000,Petrol
460
+ 482,Maruti Suzuki Eeco,Maruti,2013,290000,70000,LPG
461
+ 483,Toyota Fortuner 3.0,Toyota,2015,1525000,120000,Diesel
462
+ 484,Mahindra XUV500 W6,Mahindra,2013,548900,49800,Diesel
463
+ 485,Tata Tigor Revotron,Tata,2019,650000,100,Diesel
464
+ 486,Maruti Suzuki 800,Maruti,2001,55000,81876,Petrol
465
+ 487,Maruti Suzuki Ertiga,Maruti,2015,550000,75000,Petrol
466
+ 488,Maruti Suzuki Versa,Maruti,2004,90000,50000,Petrol
467
+ 489,Honda Mobilio S,Honda,2014,399000,44000,Diesel
468
+ 490,Maruti Suzuki Ertiga,Maruti,2016,730000,55000,Diesel
469
+ 491,Maruti Suzuki Vitara,Maruti,2017,725000,36000,Diesel
470
+ 492,Hyundai Verna 1.6,Hyundai,2016,195000,56000,Diesel
471
+ 493,Maruti Suzuki Swift,Maruti,2007,130000,62000,Petrol
472
+ 494,Toyota Fortuner 3.0,Toyota,2015,1525000,120000,Diesel
473
+ 495,Maruti Suzuki Omni,Maruti,2014,190000,6020,Petrol
474
+ 496,Honda Amaze,Honda,2013,250000,55700,Diesel
475
+ 497,Tata Indica,Tata,2005,80000,42000,Petrol
476
+ 498,Hyundai Santro Xing,Hyundai,2003,120000,50000,Petrol
477
+ 499,Maruti Suzuki Zen,Maruti,2010,149000,35000,Petrol
478
+ 500,Maruti Suzuki Wagon,Maruti,2014,250000,18500,Petrol
479
+ 501,Maruti Suzuki Wagon,Maruti,2007,120000,7000,Petrol
480
+ 502,Honda Brio VX,Honda,2017,450000,11000,Petrol
481
+ 504,Maruti Suzuki Zen,Maruti,2003,99999,53000,Petrol
482
+ 505,Maruti Suzuki Zen,Maruti,2008,135000,23000,Petrol
483
+ 506,Maruti Suzuki Wagon,Maruti,2016,225000,35500,Diesel
484
+ 507,Maruti Suzuki Alto,Maruti,2010,99000,22134,Petrol
485
+ 508,Renault Kwid RXT,Renault,2019,370000,1000,Petrol
486
+ 509,Tata Nano Lx,Tata,2010,52000,9000,Petrol
487
+ 510,Jaguar XE XE,Jaguar,2016,2800000,8500,Petrol
488
+ 512,Hyundai Eon Magna,Hyundai,2014,190000,35000,Petrol
489
+ 513,Honda City 1.5,Honda,2014,499000,22000,Petrol
490
+ 514,Hindustan Motors Ambassador,Hindustan,2002,90000,25000,Diesel
491
+ 515,Maruti Suzuki Ritz,Maruti,2010,149000,40000,Petrol
492
+ 516,Hyundai Grand i10,Hyundai,2017,400000,20000,Petrol
493
+ 517,Hyundai Eon D,Hyundai,2016,120000,87000,Petrol
494
+ 518,Maruti Suzuki Swift,Maruti,2015,250000,55000,Petrol
495
+ 519,Maruti Suzuki Wagon,Maruti,2017,375000,23000,Petrol
496
+ 520,Honda Amaze 1.2,Honda,2014,381000,6000,Petrol
497
+ 521,Maruti Suzuki Estilo,Maruti,2013,180000,65000,Petrol
498
+ 522,Maruti Suzuki Vitara,Maruti,2016,580000,25000,Diesel
499
+ 523,Maruti Suzuki Eeco,Maruti,2015,278000,39000,Petrol
500
+ 525,Hyundai Creta 1.6,Hyundai,2016,1000000,8000,Petrol
501
+ 526,Mahindra Scorpio Vlx,Mahindra,2013,690000,75000,Diesel
502
+ 527,Maruti Suzuki Ertiga,Maruti,2012,480000,51000,Diesel
503
+ 528,Mitsubishi Lancer 1.8,Mitsubishi,2006,85000,50000,Petrol
504
+ 529,Maruti Suzuki Maruti,Maruti,2001,40000,75000,Petrol
505
+ 530,Maruti Suzuki Alto,Maruti,2015,90000,55800,Petrol
506
+ 531,Hyundai Grand i10,Hyundai,2015,340000,53000,Petrol
507
+ 532,Hyundai Eon D,Hyundai,2018,260000,25000,Petrol
508
+ 533,Ford Fiesta SXi,Ford,2009,250000,56400,Petrol
509
+ 534,Maruti Suzuki Ritz,Maruti,2010,180000,72160,Diesel
510
+ 535,Hyundai Verna Fluidic,Hyundai,2012,350000,10000,Diesel
511
+ 536,Maruti Suzuki Wagon,Maruti,2006,90001,48000,Petrol
512
+ 537,Maruti Suzuki Estilo,Maruti,2007,115000,36000,Petrol
513
+ 538,Audi A6 2.0,Audi,2012,1599000,11500,Diesel
514
+ 539,Maruti Suzuki Wagon,Maruti,2003,130000,133000,Petrol
515
+ 540,Maruti Suzuki Wagon,Maruti,2009,159000,27000,Petrol
516
+ 541,Maruti Suzuki Wagon,Maruti,2009,160000,35000,Petrol
517
+ 542,Maruti Suzuki Alto,Maruti,2010,110000,55000,Petrol
518
+ 543,Maruti Suzuki Baleno,Maruti,2016,425000,40000,Petrol
519
+ 544,Hyundai Verna 1.6,Hyundai,2019,900000,2000,Petrol
520
+ 545,Maruti Suzuki Swift,Maruti,2009,150000,45000,Petrol
521
+ 546,Hyundai Getz Prime,Hyundai,2009,110000,20000,Petrol
522
+ 547,Hyundai Santro,Hyundai,2000,51999,88000,Petrol
523
+ 548,Hyundai Getz Prime,Hyundai,2009,115000,20000,Petrol
524
+ 549,Chevrolet Beat PS,Chevrolet,2012,215000,65422,Diesel
525
+ 550,Ford EcoSport Trend,Ford,2017,580000,10000,Petrol
526
+ 551,Maruti Suzuki Dzire,Maruti,2013,380000,35000,Petrol
527
+ 552,Hyundai Fluidic Verna,Hyundai,2013,350000,117000,Diesel
528
+ 553,Tata Indica V2,Tata,2005,35000,150000,Diesel
529
+ 554,BMW X1 xDrive20d,BMW,2011,1150000,72000,Diesel
530
+ 555,Hyundai i20 Asta,Hyundai,2010,300000,10750,Petrol
531
+ 556,Honda City 1.5,Honda,2009,269000,55000,Petrol
532
+ 557,Tata Nano,Tata,2013,60000,6800,Petrol
533
+ 558,Chevrolet Cruze LTZ,Chevrolet,2014,400000,41000,Diesel
534
+ 559,Hyundai Verna Fluidic,Hyundai,2015,430000,73000,Diesel
535
+ 561,Maruti Suzuki Swift,Maruti,2011,140000,65000,Diesel
536
+ 563,Mahindra XUV500 W10,Mahindra,2018,1299000,40000,Diesel
537
+ 564,Maruti Suzuki Alto,Maruti,2014,199000,37000,Petrol
538
+ 565,Hyundai Accent GLE,Hyundai,2006,90000,55000,Petrol
539
+ 566,Force Motors One,Force,2013,550000,140000,Diesel
540
+ 568,Maruti Suzuki Alto,Maruti,2019,265000,9800,Petrol
541
+ 569,Chevrolet Spark 1.0,Chevrolet,2011,100000,27000,Petrol
542
+ 570,Hyundai i10,Hyundai,2009,215000,27000,Petrol
543
+ 571,Toyota Etios Liva,Toyota,2012,380000,20000,Diesel
544
+ 572,Renault Duster 85PS,Renault,2013,401919,57923,Diesel
545
+ 573,Chevrolet Enjoy,Chevrolet,2014,490000,30201,Diesel
546
+ 574,Maruti Suzuki Alto,Maruti,2017,280000,6200,Petrol
547
+ 575,BMW 5 Series,BMW,2009,650000,37518,Petrol
548
+ 576,Toyota Etios Liva,Toyota,2014,160000,24652,Petrol
549
+ 577,Mahindra Jeep MM,Mahindra,2004,424000,383,Diesel
550
+ 578,Chevrolet Beat LS,Chevrolet,2016,225000,95000,Diesel
551
+ 579,Chevrolet Cruze LTZ,Chevrolet,2011,350000,35000,Diesel
552
+ 580,Jeep Wrangler Unlimited,Jeep,2015,950000,3528,Diesel
553
+ 581,Maruti Suzuki Ertiga,Maruti,2013,485000,52500,Diesel
554
+ 582,Hyundai Verna VGT,Hyundai,2010,205000,47900,Diesel
555
+ 583,Maruti Suzuki Omni,Maruti,2012,160000,14000,Petrol
556
+ 584,Maruti Suzuki Celerio,Maruti,2018,310000,37000,Petrol
557
+ 585,Tata Zest Quadrajet,Tata,2017,180000,90000,Diesel
558
+ 586,Mahindra XUV500 W6,Mahindra,2013,549900,52800,Diesel
559
+ 587,Tata Indigo CS,Tata,2016,150000,104000,Diesel
560
+ 588,Hyundai i10 Era,Hyundai,2011,175000,30000,Petrol
561
+ 589,Tata Indigo eCS,Tata,2014,95000,195000,Diesel
562
+ 590,Tata Indigo LX,Tata,2016,230000,104000,Diesel
563
+ 591,Tata Indigo eCS,Tata,2016,230000,104000,Diesel
564
+ 592,Tata Indigo Marina,Tata,2004,180000,70000,Diesel
565
+ 594,Hyundai Xcent SX,Hyundai,2015,400000,43000,Diesel
566
+ 595,Hyundai Eon Magna,Hyundai,2013,185000,23000,Petrol
567
+ 596,Renault Duster 85,Renault,2015,385000,51000,Diesel
568
+ 597,Maruti Suzuki Alto,Maruti,2009,90000,62000,Petrol
569
+ 598,Tata Nano LX,Tata,2010,32000,48008,Petrol
570
+ 600,Renault Duster 110,Renault,2013,435000,39000,Diesel
571
+ 601,Maruti Suzuki Wagon,Maruti,2010,225000,40000,Petrol
572
+ 602,Maruti Suzuki Swift,Maruti,2006,189700,48247,Petrol
573
+ 603,Maruti Suzuki Ertiga,Maruti,2012,389700,39000,Diesel
574
+ 604,Maruti Suzuki Swift,Maruti,2014,365000,23000,Petrol
575
+ 605,Maruti Suzuki Alto,Maruti,2017,360000,9400,Petrol
576
+ 606,Hyundai i20 Magna,Hyundai,2010,210000,50000,Petrol
577
+ 607,Hyundai i10 Magna,Hyundai,2009,170000,75000,Petrol
578
+ 609,Tata Zest XE,Tata,2017,380000,70000,Diesel
579
+ 610,Mahindra Xylo E8,Mahindra,2009,295000,64000,Diesel
580
+ 611,Toyota Corolla Altis,Toyota,2010,185000,55000,Petrol
581
+ 612,Tata Manza Aqua,Tata,2014,160000,200000,Diesel
582
+ 615,Renault Kwid 1.0,Renault,2018,290000,2137,Petrol
583
+ 617,Tata Venture EX,Tata,2013,100000,30000,Diesel
584
+ 618,Maruti Suzuki Swift,Maruti,2014,315000,44000,Petrol
585
+ 620,Skoda Octavia Classic,Skoda,2006,114990,65000,Diesel
586
+ 621,Maruti Suzuki Omni,Maruti,2012,120000,160000,LPG
587
+ 622,Chevrolet Beat Diesel,Chevrolet,2011,125000,56000,Diesel
588
+ 623,Tata Sumo Gold,Tata,2012,210000,75000,Diesel
589
+ 625,Hyundai Verna 1.6,Hyundai,2018,855000,42000,Diesel
590
+ 626,Tata Sumo Gold,Tata,2012,210000,75000,Diesel
591
+ 627,Mahindra Scorpio 2.6,Mahindra,2007,260000,56000,Diesel
592
+ 628,Maruti Suzuki Zen,Maruti,2002,95000,10544,Petrol
593
+ 629,Maruti Suzuki Swift,Maruti,2011,255000,64000,Petrol
594
+ 630,Mahindra Scorpio SLX,Mahindra,2008,300000,70000,Diesel
595
+ 631,Hyundai Grand i10,Hyundai,2014,340000,25000,Petrol
596
+ 632,Hyundai Elite i20,Hyundai,2017,550000,15000,Petrol
597
+ 633,Ford Ikon 1.6,Ford,2003,60000,50000,Petrol
598
+ 636,Toyota Innova 2.5,Toyota,2011,750000,147000,Diesel
599
+ 637,Nissan Sunny XL,Nissan,2011,230000,52000,Petrol
600
+ 638,Chevrolet Beat LT,Chevrolet,2012,130000,90001,Diesel
601
+ 639,Maruti Suzuki Alto,Maruti,2017,270000,21000,Petrol
602
+ 640,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel
603
+ 641,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel
604
+ 642,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel
605
+ 644,Toyota Innova 2.0,Toyota,2012,600000,80000,Diesel
606
+ 646,Maruti Suzuki Swift,Maruti,2010,190000,74000,Diesel
607
+ 647,Hyundai Elite i20,Hyundai,2015,500000,22000,Petrol
608
+ 648,Mahindra XUV500 W10,Mahindra,2016,1065000,41000,Diesel
609
+ 649,Volkswagen Polo Trendline,Volkswagen,2015,350000,25000,Diesel
610
+ 650,Toyota Etios Liva,Toyota,2012,350000,85000,Diesel
611
+ 651,Mahindra TUV300 T4,Mahindra,2016,540000,29500,Diesel
612
+ 652,Hyundai Elite i20,Hyundai,2015,470000,30000,Petrol
613
+ 653,Hyundai Santro Xing,Hyundai,2014,179000,57000,Petrol
614
+ 654,Maruti Suzuki Zen,Maruti,2003,48000,60000,Petrol
615
+ 655,Maruti Suzuki Ciaz,Maruti,2016,650000,50000,Petrol
616
+ 656,Hyundai Eon Era,Hyundai,2013,190000,39700,Petrol
617
+ 657,Hyundai Elantra 1.8,Hyundai,2012,500000,65000,Petrol
618
+ 658,Maruti Suzuki Swift,Maruti,2010,270000,67000,Diesel
619
+ 659,Maruti Suzuki Zen,Maruti,2008,125000,46000,Petrol
620
+ 660,Hyundai Eon Era,Hyundai,2012,188000,38000,Petrol
621
+ 661,Hyundai Grand i10,Hyundai,2016,380000,27000,Petrol
622
+ 662,Hyundai Verna Fluidic,Hyundai,2011,365000,43000,Diesel
623
+ 663,Ford EcoSport Trend,Ford,2014,465000,47000,Petrol
624
+ 664,Hyundai i20 Magna,Hyundai,2011,240000,42000,Petrol
625
+ 665,Chevrolet Beat Diesel,Chevrolet,2016,179999,19336,Diesel
626
+ 666,Tata Indica eV2,Tata,2015,140000,60105,Diesel
627
+ 667,Jaguar XF 2.2,Jaguar,2013,2190000,29000,Diesel
628
+ 668,Audi Q5 2.0,Audi,2014,2390000,34000,Diesel
629
+ 669,BMW 3 Series,BMW,2011,1075000,35000,Diesel
630
+ 670,Maruti Suzuki Swift,Maruti,2015,475000,22000,Petrol
631
+ 671,BMW X1 sDrive20d,BMW,2012,1025000,41000,Diesel
632
+ 672,Maruti Suzuki S,Maruti,2016,615000,21000,Diesel
633
+ 673,Maruti Suzuki Ertiga,Maruti,2013,475000,48000,Diesel
634
+ 674,Maruti Suzuki Alto,Maruti,2016,270000,38000,Petrol
635
+ 675,Honda City SV,Honda,2014,475000,34000,Diesel
636
+ 676,Volkswagen Vento Comfortline,Volkswagen,2011,240000,45933,Petrol
637
+ 677,Honda City 1.5,Honda,2005,120000,68000,Petrol
638
+ 678,Audi A4 2.0,Audi,2016,1900000,44000,Diesel
639
+ 679,Mahindra KUV100,Mahindra,2017,360000,35000,Diesel
640
+ 680,Tata Zest XE,Tata,2018,450000,102563,Diesel
641
+ 681,Mahindra XUV500 W8,Mahindra,2015,900000,28600,Diesel
642
+ 682,Maruti Suzuki Swift,Maruti,2017,650000,41800,Diesel
643
+ 683,Tata Sumo Gold,Tata,2014,275000,116000,Diesel
644
+ 684,Maruti Suzuki Swift,Maruti,2009,210000,59000,Petrol
645
+ 685,Mahindra Scorpio 2.6,Mahindra,2004,175000,58000,Diesel
646
+ 686,Maruti Suzuki Omni,Maruti,2009,85000,45000,Petrol
647
+ 687,Mitsubishi Pajero Sport,Mitsubishi,2015,1490000,42590,Diesel
648
+ 688,Renault Duster,Renault,2014,800000,7400,Diesel
649
+ 689,Volkswagen Jetta Comfortline,Volkswagen,2009,450000,54500,Diesel
650
+ 690,Maruti Suzuki Ertiga,Maruti,2012,1000000,200000,Diesel
651
+ 691,Audi A4 2.0,Audi,2013,1510000,27000,Diesel
652
+ 692,Volvo S80 Summum,Volvo,2015,1850000,42000,Diesel
653
+ 693,Toyota Corolla Altis,Toyota,2014,790000,29000,Petrol
654
+ 694,Mitsubishi Pajero Sport,Mitsubishi,2015,1725000,37000,Diesel
655
+ 695,Chevrolet Beat LT,Chevrolet,2012,135000,36000,Petrol
656
+ 696,BMW X1,BMW,2011,1000000,34000,Diesel
657
+ 697,Datsun Redi GO,Datsun,2018,299999,7000,Petrol
658
+ 698,Mercedes Benz C,Mercedes,2009,1225000,76000,Diesel
659
+ 699,Mahindra Scorpio SLX,Mahindra,2004,175000,60000,Diesel
660
+ 700,Volkswagen Vento Comfortline,Volkswagen,2011,200000,95000,Diesel
661
+ 701,Tata Indigo CS,Tata,2017,270000,50000,Diesel
662
+ 702,Ford Figo Petrol,Ford,2019,525000,0,Petrol
663
+ 703,Honda City ZX,Honda,2006,180000,50000,Petrol
664
+ 704,Maruti Suzuki Wagon,Maruti,2008,140000,68000,Petrol
665
+ 705,Ford EcoSport Trend,Ford,2014,400000,16000,Petrol
666
+ 706,Maruti Suzuki Swift,Maruti,2016,499000,51000,Diesel
667
+ 707,Maruti Suzuki Omni,Maruti,2009,85000,56000,Petrol
668
+ 708,Maruti Suzuki Zen,Maruti,2004,70000,100000,Petrol
669
+ 709,Renault Duster RxL,Renault,2015,550000,36000,Petrol
670
+ 710,Maruti Suzuki Swift,Maruti,2014,370000,11523,Petrol
671
+ 711,Maruti Suzuki Baleno,Maruti,2018,690000,1000,Petrol
672
+ 712,Honda WR V,Honda,2009,250000,60000,Petrol
673
+ 713,Tata Indigo CS,Tata,2016,110000,85000,Diesel
674
+ 714,Renault Duster 110,Renault,2013,490000,38600,Diesel
675
+ 715,Mahindra Scorpio LX,Mahindra,2009,320000,95500,Diesel
676
+ 716,Maruti Suzuki Zen,Maruti,2004,68000,56000,Petrol
677
+ 717,Maruti Suzuki Wagon,Maruti,2014,130000,37458,Petrol
678
+ 718,Maruti Suzuki SX4,Maruti,2016,970000,85960,Diesel
679
+ 719,Audi A3 Cabriolet,Audi,2015,3100000,12516,Petrol
680
+ 720,Hyundai Eon D,Hyundai,2018,280000,35000,Petrol
681
+ 721,Maruti Suzuki Zen,Maruti,2009,125000,0,Petrol
682
+ 722,Mahindra Scorpio SLX,Mahindra,2008,285000,80000,Diesel
683
+ 724,Hyundai Santro AE,Hyundai,2011,165000,45000,Petrol
684
+ 726,Maruti Suzuki Swift,Maruti,2009,250000,51000,Diesel
685
+ 727,Mahindra Scorpio S4,Mahindra,2015,865000,30000,Diesel
686
+ 729,Mahindra Xylo D2,Mahindra,2011,390000,48000,Diesel
687
+ 730,Hyundai Santro,Hyundai,2003,60000,51000,Petrol
688
+ 731,Chevrolet Beat LT,Chevrolet,2015,215000,90000,Diesel
689
+ 732,Maruti Suzuki Swift,Maruti,2015,475000,43000,Diesel
690
+ 733,Mahindra XUV500 W8,Mahindra,2015,899000,53000,Diesel
691
+ 734,Toyota Fortuner 3.0,Toyota,2013,1499000,97000,Diesel
692
+ 735,Maruti Suzuki Alto,Maruti,2013,240000,20000,Petrol
693
+ 736,Hyundai Getz GLE,Hyundai,2007,99000,55000,Petrol
694
+ 737,Maruti Suzuki Swift,Maruti,2014,260000,120000,Diesel
695
+ 738,Hyundai Creta 1.6,Hyundai,2019,1200000,0,Petrol
696
+ 739,Hyundai Santro Xing,Hyundai,2007,115000,46000,Petrol
697
+ 740,Hyundai Santro Xing,Hyundai,2009,88000,43200,Petrol
698
+ 741,Mahindra Xylo D2,Mahindra,2011,390000,56000,Diesel
699
+ 742,Hyundai Santro Xing,Hyundai,2007,135000,42000,Petrol
700
+ 743,Tata Indica V2,Tata,2009,90000,30600,Diesel
701
+ 744,Hyundai i10 Sportz,Hyundai,2011,220000,38000,Petrol
702
+ 745,Hyundai Grand i10,Hyundai,2017,424999,2550,Petrol
703
+ 746,Hyundai Santro Xing,Hyundai,2007,135000,47000,Petrol
704
+ 747,Honda City 1.5,Honda,2005,95000,41000,Petrol
705
+ 748,Nissan Micra XL,Nissan,2017,430000,62500,Diesel
706
+ 749,Honda City 1.5,Honda,2005,115000,68000,Petrol
707
+ 750,Maruti Suzuki Alto,Maruti,2015,215000,50000,Petrol
708
+ 751,Maruti Suzuki Wagon,Maruti,2004,53000,69000,Petrol
709
+ 752,Maruti Suzuki Ertiga,Maruti,2012,500000,48000,Diesel
710
+ 753,Tata Indica eV2,Tata,2012,85000,55000,Diesel
711
+ 754,Maruti Suzuki Omni,Maruti,2013,165000,25000,Petrol
712
+ 755,Hyundai Eon Era,Hyundai,2014,200000,28400,Petrol
713
+ 756,Hyundai Eon,Hyundai,2014,200000,28000,Petrol
714
+ 757,Maruti Suzuki Swift,Maruti,2015,425000,42000,Diesel
715
+ 759,Hyundai Verna 1.6,Hyundai,2012,600000,29000,Diesel
716
+ 760,Chevrolet Tavera LS,Chevrolet,2005,130000,68485,Diesel
717
+ 761,Tata Tiago Revotron,Tata,2018,430000,3500,Petrol
718
+ 762,Tata Tiago Revotorq,Tata,2019,568500,0,Petrol
719
+ 765,Maruti Suzuki Zen,Maruti,2006,71000,32000,Petrol
720
+ 766,Mahindra KUV100 K8,Mahindra,2018,560000,8000,Diesel
721
+ 767,Ford EcoSport Titanium,Ford,2014,590000,34000,Diesel
722
+ 768,Hindustan Motors Ambassador,Hindustan,1995,750000,37000,Petrol
723
+ 769,Ford Fusion 1.4,Ford,2007,125000,85455,Diesel
724
+ 770,Hyundai Santro Xing,Hyundai,2007,135000,46000,Petrol
725
+ 771,Hyundai Santro,Hyundai,2002,60000,47000,Petrol
726
+ 772,Fiat Linea Emotion,Fiat,2009,120000,64000,Petrol
727
+ 773,Ford Ikon 1.3,Ford,2008,95000,46000,Petrol
728
+ 774,Maruti Suzuki Omni,Maruti,2017,240000,8000,Petrol
729
+ 775,Tata Indica V2,Tata,2012,115000,64000,Diesel
730
+ 776,Mahindra Scorpio S4,Mahindra,2015,795000,63000,Diesel
731
+ 777,Hyundai Santro Xing,Hyundai,2007,55000,65000,Petrol
732
+ 778,Mahindra Xylo D2,Mahindra,2009,300000,62000,Diesel
733
+ 779,Hyundai Grand i10,Hyundai,2014,320000,41000,Petrol
734
+ 780,Maruti Suzuki Alto,Maruti,2015,265000,14000,Petrol
735
+ 781,Toyota Corolla,Toyota,2006,160000,40000,Petrol
736
+ 782,Hyundai Eon Magna,Hyundai,2017,300000,1600,Petrol
737
+ 783,Tata Sumo Grande,Tata,2010,130000,90000,Diesel
738
+ 784,Maruti Suzuki Swift,Maruti,2011,250000,58000,Diesel
739
+ 785,Volkswagen Polo Highline1.2L,Volkswagen,2013,380000,27000,Petrol
740
+ 786,Maruti Suzuki Alto,Maruti,2003,42000,60000,Petrol
741
+ 787,Tata Tiago Revotron,Tata,2017,400000,31000,Petrol
742
+ 788,Maruti Suzuki Swift,Maruti,2009,120000,90000,Diesel
743
+ 789,Maruti Suzuki Swift,Maruti,2009,120000,90000,Diesel
744
+ 790,Tata Indigo eCS,Tata,2016,130000,150000,Diesel
745
+ 791,Chevrolet Beat LS,Chevrolet,2014,189000,31000,Diesel
746
+ 793,Mahindra Xylo E8,Mahindra,2011,365000,43000,Diesel
747
+ 794,Hyundai Eon D,Hyundai,2013,170000,20000,Petrol
748
+ 804,Tata Sumo Gold,Tata,2013,215000,100000,Petrol
749
+ 813,Tata Nano,Tata,2013,60000,7000,Petrol
750
+ 814,Hyundai Elite i20,Hyundai,2017,599999,31000,Petrol
751
+ 815,Hyundai i10 Magna,Hyundai,2009,400000,33000,Petrol
752
+ 816,Hyundai Creta,Hyundai,2016,900000,60000,Diesel
753
+ 817,Volkswagen Polo,Volkswagen,2013,299999,48000,Diesel
754
+ 818,Maruti Suzuki Dzire,Maruti,2014,374999,33000,Petrol
755
+ 819,Tata Bolt XM,Tata,2015,600000,15000,Petrol
756
+ 820,Maruti Suzuki Alto,Maruti,2005,70000,47000,Petrol
757
+ 821,Maruti Suzuki Alto,Maruti,2005,100000,40000,Petrol
758
+ 823,Maruti Suzuki Ritz,Maruti,2010,150000,38000,Diesel
759
+ 824,Maruti Suzuki Alto,Maruti,2017,225000,12500,Petrol
760
+ 825,Maruti Suzuki Dzire,Maruti,2009,210000,42000,Petrol
761
+ 827,Hyundai i20 Asta,Hyundai,2014,425000,31000,Petrol
762
+ 828,Maruti Suzuki Swift,Maruti,2008,162000,60000,Diesel
763
+ 829,Tata Indica V2,Tata,2005,60000,80000,Diesel
764
+ 830,Mahindra Scorpio VLX,Mahindra,2014,650000,77000,Diesel
765
+ 831,Toyota Innova 2.5,Toyota,2012,750000,75000,Diesel
766
+ 832,Mahindra Xylo E8,Mahindra,2010,375000,40000,Diesel
767
+ 833,Hyundai i20 Magna,Hyundai,2011,230000,47000,Petrol
768
+ 834,Maruti Suzuki Omni,Maruti,2000,35999,60000,Petrol
769
+ 835,Mahindra KUV100,Mahindra,2016,380000,26500,Petrol
770
+ 836,Mahindra KUV100 K8,Mahindra,2019,560000,2875,Petrol
771
+ 837,Datsun Go Plus,Datsun,2016,285000,13900,Petrol
772
+ 838,Ford Endeavor 4x4,Ford,2019,2900000,9000,Diesel
773
+ 839,Tata Indica V2,Tata,2005,39999,80000,Diesel
774
+ 840,Hyundai Santro Xing,Hyundai,2006,85000,60000,Petrol
775
+ 841,Maruti Suzuki Wagon,Maruti,2016,395000,20000,Petrol
776
+ 842,Maruti Suzuki Swift,Maruti,2008,175000,58000,Diesel
777
+ 843,Maruti Suzuki Alto,Maruti,2019,400000,1500,Petrol
778
+ 844,Toyota Innova 2.5,Toyota,2011,750000,75000,Diesel
779
+ 846,Maruti Suzuki Alto,Maruti,2016,250000,2450,Petrol
780
+ 847,Maruti Suzuki Alto,Maruti,2019,425000,1625,Petrol
781
+ 849,Volkswagen Polo Highline1.2L,Volkswagen,2017,525000,45000,Petrol
782
+ 850,Mahindra Logan,Mahindra,2009,130000,65000,Diesel
783
+ 851,Maruti Suzuki 800,Maruti,2000,30000,33400,Petrol
784
+ 852,Mahindra Scorpio,Mahindra,2011,475000,60123,Diesel
785
+ 853,Chevrolet Sail 1.2,Chevrolet,2013,300000,28000,Petrol
786
+ 855,Hyundai Santro AE,Hyundai,2003,60000,70000,Petrol
787
+ 856,Maruti Suzuki Wagon,Maruti,2006,100000,7000,Petrol
788
+ 857,Hyundai Eon,Hyundai,2018,260000,25000,Petrol
789
+ 858,Tata Manza,Tata,2015,100000,100000,Diesel
790
+ 860,Toyota Etios G,Toyota,2013,265000,42000,Petrol
791
+ 861,Hyundai Getz Prime,Hyundai,2009,115000,20000,Petrol
792
+ 862,Toyota Qualis,Toyota,2003,180000,100000,Diesel
793
+ 863,Hyundai Santro Xing,Hyundai,2004,45000,137495,Petrol
794
+ 864,Tata Indica eV2,Tata,2016,50500,91200,Diesel
795
+ 865,Honda City 1.5,Honda,2009,270000,55000,Petrol
796
+ 866,Tata Zest XE,Tata,2017,290000,120000,Diesel
797
+ 867,Mahindra Quanto C4,Mahindra,2013,325000,63000,Diesel
798
+ 868,Tata Indigo eCS,Tata,2016,160000,104000,Diesel
799
+ 869,Maruti Suzuki Swift,Maruti,2016,350000,146000,Diesel
800
+ 870,Hyundai Elite i20,Hyundai,2011,290000,40000,Petrol
801
+ 871,Hyundai i20 Select,Hyundai,2011,290000,40000,Petrol
802
+ 872,Chevrolet Tavera Neo,Chevrolet,2007,465000,100800,Diesel
803
+ 873,Maruti Suzuki Dzire,Maruti,2016,325000,150000,Diesel
804
+ 874,Hyundai Elite i20,Hyundai,2018,510000,2100,Petrol
805
+ 875,Honda City VX,Honda,2016,860000,95000,Petrol
806
+ 876,Maruti Suzuki Dzire,Maruti,2016,450000,2500,Diesel
807
+ 877,Hyundai Getz,Hyundai,2006,125000,80000,Petrol
808
+ 878,Mercedes Benz C,Mercedes,2006,500001,15000,Petrol
809
+ 879,Maruti Suzuki Alto,Maruti,2005,95000,65000,Petrol
810
+ 880,Maruti Suzuki Swift,Maruti,2009,250000,51000,Diesel
811
+ 881,Skoda Fabia,Skoda,2009,110000,45000,Petrol
812
+ 883,Maruti Suzuki Ritz,Maruti,2011,270000,50000,Petrol
813
+ 885,Tata Indica V2,Tata,2009,110000,30000,Diesel
814
+ 886,Toyota Corolla Altis,Toyota,2009,300000,132000,Petrol
815
+ 888,Tata Zest XM,Tata,2018,260000,27000,Diesel
816
+ 889,Mahindra Quanto C8,Mahindra,2013,390000,40000,Diesel
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ blinker==1.6.2
2
+ click==8.1.3
3
+ Flask==2.3.1
4
+ itsdangerous==2.1.2
5
+ Jinja2==3.1.2
6
+ joblib==1.2.0
7
+ MarkupSafe==2.1.2
8
+ numpy==1.24.3
9
+ pandas==2.0.1
10
+ python-dateutil==2.8.2
11
+ pytz==2023.3
12
+ scikit-learn==1.2.2
13
+ scipy==1.10.1
14
+ six==1.16.0
15
+ sklearn==0.0.post4
16
+ threadpoolctl==3.1.0
17
+ tzdata==2023.3
18
+ Werkzeug==2.3.2