Spaces:
No application file
No application file
Upload 5 files
Browse files- Car_Price_Predictor.ipynb +1982 -0
- LinearRegressionModel.pkl +3 -0
- application.py +36 -0
- cleaned car.csv +816 -0
- requirements.txt +18 -0
Car_Price_Predictor.ipynb
ADDED
@@ -0,0 +1,1982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"authorship_tag": "ABX9TyPmt2lmbu+FwSqN/2ioK1mu"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"cells": [
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": null,
|
21 |
+
"metadata": {
|
22 |
+
"id": "I6tnizR9KmGN"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import pandas as pd\n",
|
27 |
+
"import numpy as np\n"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"source": [
|
33 |
+
"car = pd.read_csv('https://raw.githubusercontent.com/rajtilakls2510/car_price_predictor/master/quikr_car.csv')\n",
|
34 |
+
"car.head()"
|
35 |
+
],
|
36 |
+
"metadata": {
|
37 |
+
"colab": {
|
38 |
+
"base_uri": "https://localhost:8080/",
|
39 |
+
"height": 206
|
40 |
+
},
|
41 |
+
"id": "_QB98RY-L_DI",
|
42 |
+
"outputId": "85adff85-d29f-46d3-9b5c-c721a0dcc7f8"
|
43 |
+
},
|
44 |
+
"execution_count": null,
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"output_type": "execute_result",
|
48 |
+
"data": {
|
49 |
+
"text/plain": [
|
50 |
+
" name company year Price \\\n",
|
51 |
+
"0 Hyundai Santro Xing XO eRLX Euro III Hyundai 2007 80,000 \n",
|
52 |
+
"1 Mahindra Jeep CL550 MDI Mahindra 2006 4,25,000 \n",
|
53 |
+
"2 Maruti Suzuki Alto 800 Vxi Maruti 2018 Ask For Price \n",
|
54 |
+
"3 Hyundai Grand i10 Magna 1.2 Kappa VTVT Hyundai 2014 3,25,000 \n",
|
55 |
+
"4 Ford EcoSport Titanium 1.5L TDCi Ford 2014 5,75,000 \n",
|
56 |
+
"\n",
|
57 |
+
" kms_driven fuel_type \n",
|
58 |
+
"0 45,000 kms Petrol \n",
|
59 |
+
"1 40 kms Diesel \n",
|
60 |
+
"2 22,000 kms Petrol \n",
|
61 |
+
"3 28,000 kms Petrol \n",
|
62 |
+
"4 36,000 kms Diesel "
|
63 |
+
],
|
64 |
+
"text/html": [
|
65 |
+
"\n",
|
66 |
+
" <div id=\"df-940caad2-31d8-4e4a-afe4-711d22c64a75\">\n",
|
67 |
+
" <div class=\"colab-df-container\">\n",
|
68 |
+
" <div>\n",
|
69 |
+
"<style scoped>\n",
|
70 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
71 |
+
" vertical-align: middle;\n",
|
72 |
+
" }\n",
|
73 |
+
"\n",
|
74 |
+
" .dataframe tbody tr th {\n",
|
75 |
+
" vertical-align: top;\n",
|
76 |
+
" }\n",
|
77 |
+
"\n",
|
78 |
+
" .dataframe thead th {\n",
|
79 |
+
" text-align: right;\n",
|
80 |
+
" }\n",
|
81 |
+
"</style>\n",
|
82 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
83 |
+
" <thead>\n",
|
84 |
+
" <tr style=\"text-align: right;\">\n",
|
85 |
+
" <th></th>\n",
|
86 |
+
" <th>name</th>\n",
|
87 |
+
" <th>company</th>\n",
|
88 |
+
" <th>year</th>\n",
|
89 |
+
" <th>Price</th>\n",
|
90 |
+
" <th>kms_driven</th>\n",
|
91 |
+
" <th>fuel_type</th>\n",
|
92 |
+
" </tr>\n",
|
93 |
+
" </thead>\n",
|
94 |
+
" <tbody>\n",
|
95 |
+
" <tr>\n",
|
96 |
+
" <th>0</th>\n",
|
97 |
+
" <td>Hyundai Santro Xing XO eRLX Euro III</td>\n",
|
98 |
+
" <td>Hyundai</td>\n",
|
99 |
+
" <td>2007</td>\n",
|
100 |
+
" <td>80,000</td>\n",
|
101 |
+
" <td>45,000 kms</td>\n",
|
102 |
+
" <td>Petrol</td>\n",
|
103 |
+
" </tr>\n",
|
104 |
+
" <tr>\n",
|
105 |
+
" <th>1</th>\n",
|
106 |
+
" <td>Mahindra Jeep CL550 MDI</td>\n",
|
107 |
+
" <td>Mahindra</td>\n",
|
108 |
+
" <td>2006</td>\n",
|
109 |
+
" <td>4,25,000</td>\n",
|
110 |
+
" <td>40 kms</td>\n",
|
111 |
+
" <td>Diesel</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>2</th>\n",
|
115 |
+
" <td>Maruti Suzuki Alto 800 Vxi</td>\n",
|
116 |
+
" <td>Maruti</td>\n",
|
117 |
+
" <td>2018</td>\n",
|
118 |
+
" <td>Ask For Price</td>\n",
|
119 |
+
" <td>22,000 kms</td>\n",
|
120 |
+
" <td>Petrol</td>\n",
|
121 |
+
" </tr>\n",
|
122 |
+
" <tr>\n",
|
123 |
+
" <th>3</th>\n",
|
124 |
+
" <td>Hyundai Grand i10 Magna 1.2 Kappa VTVT</td>\n",
|
125 |
+
" <td>Hyundai</td>\n",
|
126 |
+
" <td>2014</td>\n",
|
127 |
+
" <td>3,25,000</td>\n",
|
128 |
+
" <td>28,000 kms</td>\n",
|
129 |
+
" <td>Petrol</td>\n",
|
130 |
+
" </tr>\n",
|
131 |
+
" <tr>\n",
|
132 |
+
" <th>4</th>\n",
|
133 |
+
" <td>Ford EcoSport Titanium 1.5L TDCi</td>\n",
|
134 |
+
" <td>Ford</td>\n",
|
135 |
+
" <td>2014</td>\n",
|
136 |
+
" <td>5,75,000</td>\n",
|
137 |
+
" <td>36,000 kms</td>\n",
|
138 |
+
" <td>Diesel</td>\n",
|
139 |
+
" </tr>\n",
|
140 |
+
" </tbody>\n",
|
141 |
+
"</table>\n",
|
142 |
+
"</div>\n",
|
143 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-940caad2-31d8-4e4a-afe4-711d22c64a75')\"\n",
|
144 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
145 |
+
" style=\"display:none;\">\n",
|
146 |
+
" \n",
|
147 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
148 |
+
" width=\"24px\">\n",
|
149 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
150 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
151 |
+
" </svg>\n",
|
152 |
+
" </button>\n",
|
153 |
+
" \n",
|
154 |
+
" <style>\n",
|
155 |
+
" .colab-df-container {\n",
|
156 |
+
" display:flex;\n",
|
157 |
+
" flex-wrap:wrap;\n",
|
158 |
+
" gap: 12px;\n",
|
159 |
+
" }\n",
|
160 |
+
"\n",
|
161 |
+
" .colab-df-convert {\n",
|
162 |
+
" background-color: #E8F0FE;\n",
|
163 |
+
" border: none;\n",
|
164 |
+
" border-radius: 50%;\n",
|
165 |
+
" cursor: pointer;\n",
|
166 |
+
" display: none;\n",
|
167 |
+
" fill: #1967D2;\n",
|
168 |
+
" height: 32px;\n",
|
169 |
+
" padding: 0 0 0 0;\n",
|
170 |
+
" width: 32px;\n",
|
171 |
+
" }\n",
|
172 |
+
"\n",
|
173 |
+
" .colab-df-convert:hover {\n",
|
174 |
+
" background-color: #E2EBFA;\n",
|
175 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
176 |
+
" fill: #174EA6;\n",
|
177 |
+
" }\n",
|
178 |
+
"\n",
|
179 |
+
" [theme=dark] .colab-df-convert {\n",
|
180 |
+
" background-color: #3B4455;\n",
|
181 |
+
" fill: #D2E3FC;\n",
|
182 |
+
" }\n",
|
183 |
+
"\n",
|
184 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
185 |
+
" background-color: #434B5C;\n",
|
186 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
187 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
188 |
+
" fill: #FFFFFF;\n",
|
189 |
+
" }\n",
|
190 |
+
" </style>\n",
|
191 |
+
"\n",
|
192 |
+
" <script>\n",
|
193 |
+
" const buttonEl =\n",
|
194 |
+
" document.querySelector('#df-940caad2-31d8-4e4a-afe4-711d22c64a75 button.colab-df-convert');\n",
|
195 |
+
" buttonEl.style.display =\n",
|
196 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
197 |
+
"\n",
|
198 |
+
" async function convertToInteractive(key) {\n",
|
199 |
+
" const element = document.querySelector('#df-940caad2-31d8-4e4a-afe4-711d22c64a75');\n",
|
200 |
+
" const dataTable =\n",
|
201 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
202 |
+
" [key], {});\n",
|
203 |
+
" if (!dataTable) return;\n",
|
204 |
+
"\n",
|
205 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
206 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
207 |
+
" + ' to learn more about interactive tables.';\n",
|
208 |
+
" element.innerHTML = '';\n",
|
209 |
+
" dataTable['output_type'] = 'display_data';\n",
|
210 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
211 |
+
" const docLink = document.createElement('div');\n",
|
212 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
213 |
+
" element.appendChild(docLink);\n",
|
214 |
+
" }\n",
|
215 |
+
" </script>\n",
|
216 |
+
" </div>\n",
|
217 |
+
" </div>\n",
|
218 |
+
" "
|
219 |
+
]
|
220 |
+
},
|
221 |
+
"metadata": {},
|
222 |
+
"execution_count": 2
|
223 |
+
}
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"source": [
|
229 |
+
"car.shape"
|
230 |
+
],
|
231 |
+
"metadata": {
|
232 |
+
"colab": {
|
233 |
+
"base_uri": "https://localhost:8080/"
|
234 |
+
},
|
235 |
+
"id": "Wwy0Ve_wNG9M",
|
236 |
+
"outputId": "43958f8c-46a1-4274-9c6b-7fb0f4e9c1d3"
|
237 |
+
},
|
238 |
+
"execution_count": null,
|
239 |
+
"outputs": [
|
240 |
+
{
|
241 |
+
"output_type": "execute_result",
|
242 |
+
"data": {
|
243 |
+
"text/plain": [
|
244 |
+
"(892, 6)"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
"metadata": {},
|
248 |
+
"execution_count": 3
|
249 |
+
}
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"source": [
|
255 |
+
"car.info()"
|
256 |
+
],
|
257 |
+
"metadata": {
|
258 |
+
"colab": {
|
259 |
+
"base_uri": "https://localhost:8080/"
|
260 |
+
},
|
261 |
+
"id": "Xh6mrkM0NLeU",
|
262 |
+
"outputId": "e2b7a481-1583-46aa-e547-7da1f3d6ae82"
|
263 |
+
},
|
264 |
+
"execution_count": null,
|
265 |
+
"outputs": [
|
266 |
+
{
|
267 |
+
"output_type": "stream",
|
268 |
+
"name": "stdout",
|
269 |
+
"text": [
|
270 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
271 |
+
"RangeIndex: 892 entries, 0 to 891\n",
|
272 |
+
"Data columns (total 6 columns):\n",
|
273 |
+
" # Column Non-Null Count Dtype \n",
|
274 |
+
"--- ------ -------------- ----- \n",
|
275 |
+
" 0 name 892 non-null object\n",
|
276 |
+
" 1 company 892 non-null object\n",
|
277 |
+
" 2 year 892 non-null object\n",
|
278 |
+
" 3 Price 892 non-null object\n",
|
279 |
+
" 4 kms_driven 840 non-null object\n",
|
280 |
+
" 5 fuel_type 837 non-null object\n",
|
281 |
+
"dtypes: object(6)\n",
|
282 |
+
"memory usage: 41.9+ KB\n"
|
283 |
+
]
|
284 |
+
}
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"source": [
|
290 |
+
"car['year'].unique()"
|
291 |
+
],
|
292 |
+
"metadata": {
|
293 |
+
"colab": {
|
294 |
+
"base_uri": "https://localhost:8080/"
|
295 |
+
},
|
296 |
+
"id": "1U_wrin0NO0F",
|
297 |
+
"outputId": "7ec4499e-c071-4ae0-9ea6-7a854185852e"
|
298 |
+
},
|
299 |
+
"execution_count": null,
|
300 |
+
"outputs": [
|
301 |
+
{
|
302 |
+
"output_type": "execute_result",
|
303 |
+
"data": {
|
304 |
+
"text/plain": [
|
305 |
+
"array(['2007', '2006', '2018', '2014', '2015', '2012', '2013', '2016',\n",
|
306 |
+
" '2010', '2017', '2008', '2011', '2019', '2009', '2005', '2000',\n",
|
307 |
+
" '...', '150k', 'TOUR', '2003', 'r 15', '2004', 'Zest', '/-Rs',\n",
|
308 |
+
" 'sale', '1995', 'ara)', '2002', 'SELL', '2001', 'tion', 'odel',\n",
|
309 |
+
" '2 bs', 'arry', 'Eon', 'o...', 'ture', 'emi', 'car', 'able', 'no.',\n",
|
310 |
+
" 'd...', 'SALE', 'digo', 'sell', 'd Ex', 'n...', 'e...', 'D...',\n",
|
311 |
+
" ', Ac', 'go .', 'k...', 'o c4', 'zire', 'cent', 'Sumo', 'cab',\n",
|
312 |
+
" 't xe', 'EV2', 'r...', 'zest'], dtype=object)"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
"metadata": {},
|
316 |
+
"execution_count": 5
|
317 |
+
}
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "markdown",
|
322 |
+
"source": [
|
323 |
+
"In year column has alphbet values (Non-year value)"
|
324 |
+
],
|
325 |
+
"metadata": {
|
326 |
+
"id": "y93Rrz_YNhKo"
|
327 |
+
}
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "code",
|
331 |
+
"source": [
|
332 |
+
"car['Price'].unique()"
|
333 |
+
],
|
334 |
+
"metadata": {
|
335 |
+
"colab": {
|
336 |
+
"base_uri": "https://localhost:8080/"
|
337 |
+
},
|
338 |
+
"id": "H_n8jcMMNbfk",
|
339 |
+
"outputId": "10cd6ade-1ba5-4998-d3ef-b00c00e4cc39"
|
340 |
+
},
|
341 |
+
"execution_count": null,
|
342 |
+
"outputs": [
|
343 |
+
{
|
344 |
+
"output_type": "execute_result",
|
345 |
+
"data": {
|
346 |
+
"text/plain": [
|
347 |
+
"array(['80,000', '4,25,000', 'Ask For Price', '3,25,000', '5,75,000',\n",
|
348 |
+
" '1,75,000', '1,90,000', '8,30,000', '2,50,000', '1,82,000',\n",
|
349 |
+
" '3,15,000', '4,15,000', '3,20,000', '10,00,000', '5,00,000',\n",
|
350 |
+
" '3,50,000', '1,60,000', '3,10,000', '75,000', '1,00,000',\n",
|
351 |
+
" '2,90,000', '95,000', '1,80,000', '3,85,000', '1,05,000',\n",
|
352 |
+
" '6,50,000', '6,89,999', '4,48,000', '5,49,000', '5,01,000',\n",
|
353 |
+
" '4,89,999', '2,80,000', '3,49,999', '2,84,999', '3,45,000',\n",
|
354 |
+
" '4,99,999', '2,35,000', '2,49,999', '14,75,000', '3,95,000',\n",
|
355 |
+
" '2,20,000', '1,70,000', '85,000', '2,00,000', '5,70,000',\n",
|
356 |
+
" '1,10,000', '4,48,999', '18,91,111', '1,59,500', '3,44,999',\n",
|
357 |
+
" '4,49,999', '8,65,000', '6,99,000', '3,75,000', '2,24,999',\n",
|
358 |
+
" '12,00,000', '1,95,000', '3,51,000', '2,40,000', '90,000',\n",
|
359 |
+
" '1,55,000', '6,00,000', '1,89,500', '2,10,000', '3,90,000',\n",
|
360 |
+
" '1,35,000', '16,00,000', '7,01,000', '2,65,000', '5,25,000',\n",
|
361 |
+
" '3,72,000', '6,35,000', '5,50,000', '4,85,000', '3,29,500',\n",
|
362 |
+
" '2,51,111', '5,69,999', '69,999', '2,99,999', '3,99,999',\n",
|
363 |
+
" '4,50,000', '2,70,000', '1,58,400', '1,79,000', '1,25,000',\n",
|
364 |
+
" '2,99,000', '1,50,000', '2,75,000', '2,85,000', '3,40,000',\n",
|
365 |
+
" '70,000', '2,89,999', '8,49,999', '7,49,999', '2,74,999',\n",
|
366 |
+
" '9,84,999', '5,99,999', '2,44,999', '4,74,999', '2,45,000',\n",
|
367 |
+
" '1,69,500', '3,70,000', '1,68,000', '1,45,000', '98,500',\n",
|
368 |
+
" '2,09,000', '1,85,000', '9,00,000', '6,99,999', '1,99,999',\n",
|
369 |
+
" '5,44,999', '1,99,000', '5,40,000', '49,000', '7,00,000', '55,000',\n",
|
370 |
+
" '8,95,000', '3,55,000', '5,65,000', '3,65,000', '40,000',\n",
|
371 |
+
" '4,00,000', '3,30,000', '5,80,000', '3,79,000', '2,19,000',\n",
|
372 |
+
" '5,19,000', '7,30,000', '20,00,000', '21,00,000', '14,00,000',\n",
|
373 |
+
" '3,11,000', '8,55,000', '5,35,000', '1,78,000', '3,00,000',\n",
|
374 |
+
" '2,55,000', '5,49,999', '3,80,000', '57,000', '4,10,000',\n",
|
375 |
+
" '2,25,000', '1,20,000', '59,000', '5,99,000', '6,75,000', '72,500',\n",
|
376 |
+
" '6,10,000', '2,30,000', '5,20,000', '5,24,999', '4,24,999',\n",
|
377 |
+
" '6,44,999', '5,84,999', '7,99,999', '4,44,999', '6,49,999',\n",
|
378 |
+
" '9,44,999', '5,74,999', '3,74,999', '1,30,000', '4,01,000',\n",
|
379 |
+
" '13,50,000', '1,74,999', '2,39,999', '99,999', '3,24,999',\n",
|
380 |
+
" '10,74,999', '11,30,000', '1,49,000', '7,70,000', '30,000',\n",
|
381 |
+
" '3,35,000', '3,99,000', '65,000', '1,69,999', '1,65,000',\n",
|
382 |
+
" '5,60,000', '9,50,000', '7,15,000', '45,000', '9,40,000',\n",
|
383 |
+
" '1,55,555', '15,00,000', '4,95,000', '8,00,000', '12,99,000',\n",
|
384 |
+
" '5,30,000', '14,99,000', '32,000', '4,05,000', '7,60,000',\n",
|
385 |
+
" '7,50,000', '4,19,000', '1,40,000', '15,40,000', '1,23,000',\n",
|
386 |
+
" '4,98,000', '4,80,000', '4,88,000', '15,25,000', '5,48,900',\n",
|
387 |
+
" '7,25,000', '99,000', '52,000', '28,00,000', '4,99,000',\n",
|
388 |
+
" '3,81,000', '2,78,000', '6,90,000', '2,60,000', '90,001',\n",
|
389 |
+
" '1,15,000', '15,99,000', '1,59,000', '51,999', '2,15,000',\n",
|
390 |
+
" '35,000', '11,50,000', '2,69,000', '60,000', '4,30,000',\n",
|
391 |
+
" '85,00,003', '4,01,919', '4,90,000', '4,24,000', '2,05,000',\n",
|
392 |
+
" '5,49,900', '3,71,500', '4,35,000', '1,89,700', '3,89,700',\n",
|
393 |
+
" '3,60,000', '2,95,000', '1,14,990', '10,65,000', '4,70,000',\n",
|
394 |
+
" '48,000', '1,88,000', '4,65,000', '1,79,999', '21,90,000',\n",
|
395 |
+
" '23,90,000', '10,75,000', '4,75,000', '10,25,000', '6,15,000',\n",
|
396 |
+
" '19,00,000', '14,90,000', '15,10,000', '18,50,000', '7,90,000',\n",
|
397 |
+
" '17,25,000', '12,25,000', '68,000', '9,70,000', '31,00,000',\n",
|
398 |
+
" '8,99,000', '88,000', '53,000', '5,68,500', '71,000', '5,90,000',\n",
|
399 |
+
" '7,95,000', '42,000', '1,89,000', '1,62,000', '35,999',\n",
|
400 |
+
" '29,00,000', '39,999', '50,500', '5,10,000', '8,60,000',\n",
|
401 |
+
" '5,00,001'], dtype=object)"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
"metadata": {},
|
405 |
+
"execution_count": 6
|
406 |
+
}
|
407 |
+
]
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "markdown",
|
411 |
+
"source": [
|
412 |
+
"Price column has 'Ask for price' string"
|
413 |
+
],
|
414 |
+
"metadata": {
|
415 |
+
"id": "VYVx8iFOOG5K"
|
416 |
+
}
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"source": [
|
421 |
+
"car['kms_driven'].unique()"
|
422 |
+
],
|
423 |
+
"metadata": {
|
424 |
+
"colab": {
|
425 |
+
"base_uri": "https://localhost:8080/"
|
426 |
+
},
|
427 |
+
"id": "UUVyLDZ2ODAc",
|
428 |
+
"outputId": "82a219be-00b2-46b3-c279-324ecca81c06"
|
429 |
+
},
|
430 |
+
"execution_count": null,
|
431 |
+
"outputs": [
|
432 |
+
{
|
433 |
+
"output_type": "execute_result",
|
434 |
+
"data": {
|
435 |
+
"text/plain": [
|
436 |
+
"array(['45,000 kms', '40 kms', '22,000 kms', '28,000 kms', '36,000 kms',\n",
|
437 |
+
" '59,000 kms', '41,000 kms', '25,000 kms', '24,530 kms',\n",
|
438 |
+
" '60,000 kms', '30,000 kms', '32,000 kms', '48,660 kms',\n",
|
439 |
+
" '4,000 kms', '16,934 kms', '43,000 kms', '35,550 kms',\n",
|
440 |
+
" '39,522 kms', '39,000 kms', '55,000 kms', '72,000 kms',\n",
|
441 |
+
" '15,975 kms', '70,000 kms', '23,452 kms', '35,522 kms',\n",
|
442 |
+
" '48,508 kms', '15,487 kms', '82,000 kms', '20,000 kms',\n",
|
443 |
+
" '68,000 kms', '38,000 kms', '27,000 kms', '33,000 kms',\n",
|
444 |
+
" '46,000 kms', '16,000 kms', '47,000 kms', '35,000 kms',\n",
|
445 |
+
" '30,874 kms', '15,000 kms', '29,685 kms', '1,30,000 kms',\n",
|
446 |
+
" '19,000 kms', nan, '54,000 kms', '13,000 kms', '38,200 kms',\n",
|
447 |
+
" '50,000 kms', '13,500 kms', '3,600 kms', '45,863 kms',\n",
|
448 |
+
" '60,500 kms', '12,500 kms', '18,000 kms', '13,349 kms',\n",
|
449 |
+
" '29,000 kms', '44,000 kms', '42,000 kms', '14,000 kms',\n",
|
450 |
+
" '49,000 kms', '36,200 kms', '51,000 kms', '1,04,000 kms',\n",
|
451 |
+
" '33,333 kms', '33,600 kms', '5,600 kms', '7,500 kms', '26,000 kms',\n",
|
452 |
+
" '24,330 kms', '65,480 kms', '28,028 kms', '2,00,000 kms',\n",
|
453 |
+
" '99,000 kms', '2,800 kms', '21,000 kms', '11,000 kms',\n",
|
454 |
+
" '66,000 kms', '3,000 kms', '7,000 kms', '38,500 kms', '37,200 kms',\n",
|
455 |
+
" '43,200 kms', '24,800 kms', '45,872 kms', '40,000 kms',\n",
|
456 |
+
" '11,400 kms', '97,200 kms', '52,000 kms', '31,000 kms',\n",
|
457 |
+
" '1,75,430 kms', '37,000 kms', '65,000 kms', '3,350 kms',\n",
|
458 |
+
" '75,000 kms', '62,000 kms', '73,000 kms', '2,200 kms',\n",
|
459 |
+
" '54,870 kms', '34,580 kms', '97,000 kms', '60 kms', '80,200 kms',\n",
|
460 |
+
" '3,200 kms', '0,000 kms', '5,000 kms', '588 kms', '71,200 kms',\n",
|
461 |
+
" '1,75,400 kms', '9,300 kms', '56,758 kms', '10,000 kms',\n",
|
462 |
+
" '56,450 kms', '56,000 kms', '32,700 kms', '9,000 kms', '73 kms',\n",
|
463 |
+
" '1,60,000 kms', '84,000 kms', '58,559 kms', '57,000 kms',\n",
|
464 |
+
" '1,70,000 kms', '80,000 kms', '6,821 kms', '23,000 kms',\n",
|
465 |
+
" '34,000 kms', '1,800 kms', '4,00,000 kms', '48,000 kms',\n",
|
466 |
+
" '90,000 kms', '12,000 kms', '69,900 kms', '1,66,000 kms',\n",
|
467 |
+
" '122 kms', '0 kms', '24,000 kms', '36,469 kms', '7,800 kms',\n",
|
468 |
+
" '24,695 kms', '15,141 kms', '59,910 kms', '1,00,000 kms',\n",
|
469 |
+
" '4,500 kms', '1,29,000 kms', '300 kms', '1,31,000 kms',\n",
|
470 |
+
" '1,11,111 kms', '59,466 kms', '25,500 kms', '44,005 kms',\n",
|
471 |
+
" '2,110 kms', '43,222 kms', '1,00,200 kms', '65 kms',\n",
|
472 |
+
" '1,40,000 kms', '1,03,553 kms', '58,000 kms', '1,20,000 kms',\n",
|
473 |
+
" '49,800 kms', '100 kms', '81,876 kms', '6,020 kms', '55,700 kms',\n",
|
474 |
+
" '18,500 kms', '1,80,000 kms', '53,000 kms', '35,500 kms',\n",
|
475 |
+
" '22,134 kms', '1,000 kms', '8,500 kms', '87,000 kms', '6,000 kms',\n",
|
476 |
+
" '15,574 kms', '8,000 kms', '55,800 kms', '56,400 kms',\n",
|
477 |
+
" '72,160 kms', '11,500 kms', '1,33,000 kms', '2,000 kms',\n",
|
478 |
+
" '88,000 kms', '65,422 kms', '1,17,000 kms', '1,50,000 kms',\n",
|
479 |
+
" '10,750 kms', '6,800 kms', '5 kms', '9,800 kms', '57,923 kms',\n",
|
480 |
+
" '30,201 kms', '6,200 kms', '37,518 kms', '24,652 kms', '383 kms',\n",
|
481 |
+
" '95,000 kms', '3,528 kms', '52,500 kms', '47,900 kms',\n",
|
482 |
+
" '52,800 kms', '1,95,000 kms', '48,008 kms', '48,247 kms',\n",
|
483 |
+
" '9,400 kms', '64,000 kms', '2,137 kms', '10,544 kms', '49,500 kms',\n",
|
484 |
+
" '1,47,000 kms', '90,001 kms', '48,006 kms', '74,000 kms',\n",
|
485 |
+
" '85,000 kms', '29,500 kms', '39,700 kms', '67,000 kms',\n",
|
486 |
+
" '19,336 kms', '60,105 kms', '45,933 kms', '1,02,563 kms',\n",
|
487 |
+
" '28,600 kms', '41,800 kms', '1,16,000 kms', '42,590 kms',\n",
|
488 |
+
" '7,400 kms', '54,500 kms', '76,000 kms', '00 kms', '11,523 kms',\n",
|
489 |
+
" '38,600 kms', '95,500 kms', '37,458 kms', '85,960 kms',\n",
|
490 |
+
" '12,516 kms', '30,600 kms', '2,550 kms', '62,500 kms',\n",
|
491 |
+
" '69,000 kms', '28,400 kms', '68,485 kms', '3,500 kms',\n",
|
492 |
+
" '85,455 kms', '63,000 kms', '1,600 kms', '77,000 kms',\n",
|
493 |
+
" '26,500 kms', '2,875 kms', '13,900 kms', '1,500 kms', '2,450 kms',\n",
|
494 |
+
" '1,625 kms', '33,400 kms', '60,123 kms', '38,900 kms',\n",
|
495 |
+
" '1,37,495 kms', '91,200 kms', '1,46,000 kms', '1,00,800 kms',\n",
|
496 |
+
" '2,100 kms', '2,500 kms', '1,32,000 kms', 'Petrol'], dtype=object)"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
"metadata": {},
|
500 |
+
"execution_count": 7
|
501 |
+
}
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"cell_type": "markdown",
|
506 |
+
"source": [
|
507 |
+
"All numeric data has camma, and kms.\n",
|
508 |
+
"also column has 'Petrol' string"
|
509 |
+
],
|
510 |
+
"metadata": {
|
511 |
+
"id": "OW2xuYDdOeTa"
|
512 |
+
}
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"cell_type": "code",
|
516 |
+
"source": [
|
517 |
+
"car['fuel_type'].unique()"
|
518 |
+
],
|
519 |
+
"metadata": {
|
520 |
+
"colab": {
|
521 |
+
"base_uri": "https://localhost:8080/"
|
522 |
+
},
|
523 |
+
"id": "8G0rfwtgOaeJ",
|
524 |
+
"outputId": "562ebc56-52af-46da-9325-1bc708d0aa01"
|
525 |
+
},
|
526 |
+
"execution_count": null,
|
527 |
+
"outputs": [
|
528 |
+
{
|
529 |
+
"output_type": "execute_result",
|
530 |
+
"data": {
|
531 |
+
"text/plain": [
|
532 |
+
"array(['Petrol', 'Diesel', nan, 'LPG'], dtype=object)"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
"metadata": {},
|
536 |
+
"execution_count": 8
|
537 |
+
}
|
538 |
+
]
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"cell_type": "markdown",
|
542 |
+
"source": [
|
543 |
+
"## Quality of data\n",
|
544 |
+
"\n",
|
545 |
+
"1. year has many non-year values\n",
|
546 |
+
"2. Year object to int\n",
|
547 |
+
"3. price ask for price\n",
|
548 |
+
"4. price object to int\n",
|
549 |
+
"5. kms_driven has kms with intergers\n",
|
550 |
+
"6. kms_driven object to int\n",
|
551 |
+
"7. kms_driven has nan values\n",
|
552 |
+
"8. fuel_type has nan value\n",
|
553 |
+
"9. keep first 3 word of name"
|
554 |
+
],
|
555 |
+
"metadata": {
|
556 |
+
"id": "b6QNQf33PFZ0"
|
557 |
+
}
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"cell_type": "markdown",
|
561 |
+
"source": [
|
562 |
+
"## Cleaning"
|
563 |
+
],
|
564 |
+
"metadata": {
|
565 |
+
"id": "GWwGOVJ_QGmQ"
|
566 |
+
}
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"cell_type": "code",
|
570 |
+
"source": [
|
571 |
+
"backup = car.copy()"
|
572 |
+
],
|
573 |
+
"metadata": {
|
574 |
+
"id": "iXGXeDukPC2J"
|
575 |
+
},
|
576 |
+
"execution_count": null,
|
577 |
+
"outputs": []
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"source": [
|
582 |
+
"car=car[car['year'].str.isnumeric()]"
|
583 |
+
],
|
584 |
+
"metadata": {
|
585 |
+
"id": "_MNBGYqUQMvM"
|
586 |
+
},
|
587 |
+
"execution_count": null,
|
588 |
+
"outputs": []
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "code",
|
592 |
+
"source": [
|
593 |
+
"car['year']=car['year'].astype(int)"
|
594 |
+
],
|
595 |
+
"metadata": {
|
596 |
+
"id": "fYHyyMyNQnJj",
|
597 |
+
"colab": {
|
598 |
+
"base_uri": "https://localhost:8080/"
|
599 |
+
},
|
600 |
+
"outputId": "dc46662d-8a98-44e2-f135-c85fda9edc65"
|
601 |
+
},
|
602 |
+
"execution_count": null,
|
603 |
+
"outputs": [
|
604 |
+
{
|
605 |
+
"output_type": "stream",
|
606 |
+
"name": "stderr",
|
607 |
+
"text": [
|
608 |
+
"<ipython-input-11-c95edc1f455b>:1: SettingWithCopyWarning: \n",
|
609 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
610 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
611 |
+
"\n",
|
612 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
613 |
+
" car['year']=car['year'].astype(int)\n"
|
614 |
+
]
|
615 |
+
}
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"cell_type": "code",
|
620 |
+
"source": [
|
621 |
+
"car.info()"
|
622 |
+
],
|
623 |
+
"metadata": {
|
624 |
+
"colab": {
|
625 |
+
"base_uri": "https://localhost:8080/"
|
626 |
+
},
|
627 |
+
"id": "9Al6QL_oQ9e3",
|
628 |
+
"outputId": "8d95c8a8-92a0-4fbd-c847-c1bd056fedda"
|
629 |
+
},
|
630 |
+
"execution_count": null,
|
631 |
+
"outputs": [
|
632 |
+
{
|
633 |
+
"output_type": "stream",
|
634 |
+
"name": "stdout",
|
635 |
+
"text": [
|
636 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
637 |
+
"Int64Index: 842 entries, 0 to 891\n",
|
638 |
+
"Data columns (total 6 columns):\n",
|
639 |
+
" # Column Non-Null Count Dtype \n",
|
640 |
+
"--- ------ -------------- ----- \n",
|
641 |
+
" 0 name 842 non-null object\n",
|
642 |
+
" 1 company 842 non-null object\n",
|
643 |
+
" 2 year 842 non-null int64 \n",
|
644 |
+
" 3 Price 842 non-null object\n",
|
645 |
+
" 4 kms_driven 840 non-null object\n",
|
646 |
+
" 5 fuel_type 837 non-null object\n",
|
647 |
+
"dtypes: int64(1), object(5)\n",
|
648 |
+
"memory usage: 46.0+ KB\n"
|
649 |
+
]
|
650 |
+
}
|
651 |
+
]
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"cell_type": "code",
|
655 |
+
"source": [
|
656 |
+
"car.shape"
|
657 |
+
],
|
658 |
+
"metadata": {
|
659 |
+
"colab": {
|
660 |
+
"base_uri": "https://localhost:8080/"
|
661 |
+
},
|
662 |
+
"id": "O7ivSz7URJIR",
|
663 |
+
"outputId": "1d3282b9-118a-4173-9bc2-3acc5fd54a57"
|
664 |
+
},
|
665 |
+
"execution_count": null,
|
666 |
+
"outputs": [
|
667 |
+
{
|
668 |
+
"output_type": "execute_result",
|
669 |
+
"data": {
|
670 |
+
"text/plain": [
|
671 |
+
"(842, 6)"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
"metadata": {},
|
675 |
+
"execution_count": 13
|
676 |
+
}
|
677 |
+
]
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"cell_type": "code",
|
681 |
+
"source": [
|
682 |
+
"car=car[car['Price'] != 'Ask For Price']"
|
683 |
+
],
|
684 |
+
"metadata": {
|
685 |
+
"id": "3JQg_JyRRNL7"
|
686 |
+
},
|
687 |
+
"execution_count": null,
|
688 |
+
"outputs": []
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"cell_type": "code",
|
692 |
+
"source": [
|
693 |
+
"car['Price']=car['Price'].str.replace(',','').astype(int)"
|
694 |
+
],
|
695 |
+
"metadata": {
|
696 |
+
"id": "mA4qN2hvRiXQ"
|
697 |
+
},
|
698 |
+
"execution_count": null,
|
699 |
+
"outputs": []
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"source": [
|
704 |
+
"car['kms_driven']=car['kms_driven'].str.split(' ').str.get(0).str.replace(',','')"
|
705 |
+
],
|
706 |
+
"metadata": {
|
707 |
+
"id": "uZ1Dc2d5R6i8"
|
708 |
+
},
|
709 |
+
"execution_count": null,
|
710 |
+
"outputs": []
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"cell_type": "code",
|
714 |
+
"source": [
|
715 |
+
"car=car[car['kms_driven'].str.isnumeric()]"
|
716 |
+
],
|
717 |
+
"metadata": {
|
718 |
+
"id": "4quYafuESjHB"
|
719 |
+
},
|
720 |
+
"execution_count": null,
|
721 |
+
"outputs": []
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"cell_type": "code",
|
725 |
+
"source": [
|
726 |
+
"car['kms_driven']=car['kms_driven'].astype(int)"
|
727 |
+
],
|
728 |
+
"metadata": {
|
729 |
+
"id": "5uYORIqaWXWy"
|
730 |
+
},
|
731 |
+
"execution_count": null,
|
732 |
+
"outputs": []
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"cell_type": "code",
|
736 |
+
"source": [
|
737 |
+
"car=car[~car['fuel_type'].isna()]"
|
738 |
+
],
|
739 |
+
"metadata": {
|
740 |
+
"id": "RhHcSCgsTVur"
|
741 |
+
},
|
742 |
+
"execution_count": null,
|
743 |
+
"outputs": []
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"cell_type": "code",
|
747 |
+
"source": [
|
748 |
+
"car.shape"
|
749 |
+
],
|
750 |
+
"metadata": {
|
751 |
+
"colab": {
|
752 |
+
"base_uri": "https://localhost:8080/"
|
753 |
+
},
|
754 |
+
"id": "VTzBHi3DT7lS",
|
755 |
+
"outputId": "a8c30b5c-bba9-48e9-f5c7-0da650f8a001"
|
756 |
+
},
|
757 |
+
"execution_count": null,
|
758 |
+
"outputs": [
|
759 |
+
{
|
760 |
+
"output_type": "execute_result",
|
761 |
+
"data": {
|
762 |
+
"text/plain": [
|
763 |
+
"(816, 6)"
|
764 |
+
]
|
765 |
+
},
|
766 |
+
"metadata": {},
|
767 |
+
"execution_count": 20
|
768 |
+
}
|
769 |
+
]
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"cell_type": "code",
|
773 |
+
"source": [
|
774 |
+
"car['name']=car['name'].str.split(' ').str.slice(0,3).str.join(' ')"
|
775 |
+
],
|
776 |
+
"metadata": {
|
777 |
+
"id": "1qStv-CNVVvB"
|
778 |
+
},
|
779 |
+
"execution_count": null,
|
780 |
+
"outputs": []
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"source": [
|
785 |
+
"car.reset_index(drop=True)"
|
786 |
+
],
|
787 |
+
"metadata": {
|
788 |
+
"colab": {
|
789 |
+
"base_uri": "https://localhost:8080/",
|
790 |
+
"height": 424
|
791 |
+
},
|
792 |
+
"id": "wUzYTdroVjuh",
|
793 |
+
"outputId": "d20835c7-583c-4e75-f9fd-2c64734e5de1"
|
794 |
+
},
|
795 |
+
"execution_count": null,
|
796 |
+
"outputs": [
|
797 |
+
{
|
798 |
+
"output_type": "execute_result",
|
799 |
+
"data": {
|
800 |
+
"text/plain": [
|
801 |
+
" name company year Price kms_driven fuel_type\n",
|
802 |
+
"0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n",
|
803 |
+
"1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n",
|
804 |
+
"2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n",
|
805 |
+
"3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n",
|
806 |
+
"4 Ford Figo Ford 2012 175000 41000 Diesel\n",
|
807 |
+
".. ... ... ... ... ... ...\n",
|
808 |
+
"811 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n",
|
809 |
+
"812 Tata Indica V2 Tata 2009 110000 30000 Diesel\n",
|
810 |
+
"813 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n",
|
811 |
+
"814 Tata Zest XM Tata 2018 260000 27000 Diesel\n",
|
812 |
+
"815 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n",
|
813 |
+
"\n",
|
814 |
+
"[816 rows x 6 columns]"
|
815 |
+
],
|
816 |
+
"text/html": [
|
817 |
+
"\n",
|
818 |
+
" <div id=\"df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad\">\n",
|
819 |
+
" <div class=\"colab-df-container\">\n",
|
820 |
+
" <div>\n",
|
821 |
+
"<style scoped>\n",
|
822 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
823 |
+
" vertical-align: middle;\n",
|
824 |
+
" }\n",
|
825 |
+
"\n",
|
826 |
+
" .dataframe tbody tr th {\n",
|
827 |
+
" vertical-align: top;\n",
|
828 |
+
" }\n",
|
829 |
+
"\n",
|
830 |
+
" .dataframe thead th {\n",
|
831 |
+
" text-align: right;\n",
|
832 |
+
" }\n",
|
833 |
+
"</style>\n",
|
834 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
835 |
+
" <thead>\n",
|
836 |
+
" <tr style=\"text-align: right;\">\n",
|
837 |
+
" <th></th>\n",
|
838 |
+
" <th>name</th>\n",
|
839 |
+
" <th>company</th>\n",
|
840 |
+
" <th>year</th>\n",
|
841 |
+
" <th>Price</th>\n",
|
842 |
+
" <th>kms_driven</th>\n",
|
843 |
+
" <th>fuel_type</th>\n",
|
844 |
+
" </tr>\n",
|
845 |
+
" </thead>\n",
|
846 |
+
" <tbody>\n",
|
847 |
+
" <tr>\n",
|
848 |
+
" <th>0</th>\n",
|
849 |
+
" <td>Hyundai Santro Xing</td>\n",
|
850 |
+
" <td>Hyundai</td>\n",
|
851 |
+
" <td>2007</td>\n",
|
852 |
+
" <td>80000</td>\n",
|
853 |
+
" <td>45000</td>\n",
|
854 |
+
" <td>Petrol</td>\n",
|
855 |
+
" </tr>\n",
|
856 |
+
" <tr>\n",
|
857 |
+
" <th>1</th>\n",
|
858 |
+
" <td>Mahindra Jeep CL550</td>\n",
|
859 |
+
" <td>Mahindra</td>\n",
|
860 |
+
" <td>2006</td>\n",
|
861 |
+
" <td>425000</td>\n",
|
862 |
+
" <td>40</td>\n",
|
863 |
+
" <td>Diesel</td>\n",
|
864 |
+
" </tr>\n",
|
865 |
+
" <tr>\n",
|
866 |
+
" <th>2</th>\n",
|
867 |
+
" <td>Hyundai Grand i10</td>\n",
|
868 |
+
" <td>Hyundai</td>\n",
|
869 |
+
" <td>2014</td>\n",
|
870 |
+
" <td>325000</td>\n",
|
871 |
+
" <td>28000</td>\n",
|
872 |
+
" <td>Petrol</td>\n",
|
873 |
+
" </tr>\n",
|
874 |
+
" <tr>\n",
|
875 |
+
" <th>3</th>\n",
|
876 |
+
" <td>Ford EcoSport Titanium</td>\n",
|
877 |
+
" <td>Ford</td>\n",
|
878 |
+
" <td>2014</td>\n",
|
879 |
+
" <td>575000</td>\n",
|
880 |
+
" <td>36000</td>\n",
|
881 |
+
" <td>Diesel</td>\n",
|
882 |
+
" </tr>\n",
|
883 |
+
" <tr>\n",
|
884 |
+
" <th>4</th>\n",
|
885 |
+
" <td>Ford Figo</td>\n",
|
886 |
+
" <td>Ford</td>\n",
|
887 |
+
" <td>2012</td>\n",
|
888 |
+
" <td>175000</td>\n",
|
889 |
+
" <td>41000</td>\n",
|
890 |
+
" <td>Diesel</td>\n",
|
891 |
+
" </tr>\n",
|
892 |
+
" <tr>\n",
|
893 |
+
" <th>...</th>\n",
|
894 |
+
" <td>...</td>\n",
|
895 |
+
" <td>...</td>\n",
|
896 |
+
" <td>...</td>\n",
|
897 |
+
" <td>...</td>\n",
|
898 |
+
" <td>...</td>\n",
|
899 |
+
" <td>...</td>\n",
|
900 |
+
" </tr>\n",
|
901 |
+
" <tr>\n",
|
902 |
+
" <th>811</th>\n",
|
903 |
+
" <td>Maruti Suzuki Ritz</td>\n",
|
904 |
+
" <td>Maruti</td>\n",
|
905 |
+
" <td>2011</td>\n",
|
906 |
+
" <td>270000</td>\n",
|
907 |
+
" <td>50000</td>\n",
|
908 |
+
" <td>Petrol</td>\n",
|
909 |
+
" </tr>\n",
|
910 |
+
" <tr>\n",
|
911 |
+
" <th>812</th>\n",
|
912 |
+
" <td>Tata Indica V2</td>\n",
|
913 |
+
" <td>Tata</td>\n",
|
914 |
+
" <td>2009</td>\n",
|
915 |
+
" <td>110000</td>\n",
|
916 |
+
" <td>30000</td>\n",
|
917 |
+
" <td>Diesel</td>\n",
|
918 |
+
" </tr>\n",
|
919 |
+
" <tr>\n",
|
920 |
+
" <th>813</th>\n",
|
921 |
+
" <td>Toyota Corolla Altis</td>\n",
|
922 |
+
" <td>Toyota</td>\n",
|
923 |
+
" <td>2009</td>\n",
|
924 |
+
" <td>300000</td>\n",
|
925 |
+
" <td>132000</td>\n",
|
926 |
+
" <td>Petrol</td>\n",
|
927 |
+
" </tr>\n",
|
928 |
+
" <tr>\n",
|
929 |
+
" <th>814</th>\n",
|
930 |
+
" <td>Tata Zest XM</td>\n",
|
931 |
+
" <td>Tata</td>\n",
|
932 |
+
" <td>2018</td>\n",
|
933 |
+
" <td>260000</td>\n",
|
934 |
+
" <td>27000</td>\n",
|
935 |
+
" <td>Diesel</td>\n",
|
936 |
+
" </tr>\n",
|
937 |
+
" <tr>\n",
|
938 |
+
" <th>815</th>\n",
|
939 |
+
" <td>Mahindra Quanto C8</td>\n",
|
940 |
+
" <td>Mahindra</td>\n",
|
941 |
+
" <td>2013</td>\n",
|
942 |
+
" <td>390000</td>\n",
|
943 |
+
" <td>40000</td>\n",
|
944 |
+
" <td>Diesel</td>\n",
|
945 |
+
" </tr>\n",
|
946 |
+
" </tbody>\n",
|
947 |
+
"</table>\n",
|
948 |
+
"<p>816 rows × 6 columns</p>\n",
|
949 |
+
"</div>\n",
|
950 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad')\"\n",
|
951 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
952 |
+
" style=\"display:none;\">\n",
|
953 |
+
" \n",
|
954 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
955 |
+
" width=\"24px\">\n",
|
956 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
957 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
958 |
+
" </svg>\n",
|
959 |
+
" </button>\n",
|
960 |
+
" \n",
|
961 |
+
" <style>\n",
|
962 |
+
" .colab-df-container {\n",
|
963 |
+
" display:flex;\n",
|
964 |
+
" flex-wrap:wrap;\n",
|
965 |
+
" gap: 12px;\n",
|
966 |
+
" }\n",
|
967 |
+
"\n",
|
968 |
+
" .colab-df-convert {\n",
|
969 |
+
" background-color: #E8F0FE;\n",
|
970 |
+
" border: none;\n",
|
971 |
+
" border-radius: 50%;\n",
|
972 |
+
" cursor: pointer;\n",
|
973 |
+
" display: none;\n",
|
974 |
+
" fill: #1967D2;\n",
|
975 |
+
" height: 32px;\n",
|
976 |
+
" padding: 0 0 0 0;\n",
|
977 |
+
" width: 32px;\n",
|
978 |
+
" }\n",
|
979 |
+
"\n",
|
980 |
+
" .colab-df-convert:hover {\n",
|
981 |
+
" background-color: #E2EBFA;\n",
|
982 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
983 |
+
" fill: #174EA6;\n",
|
984 |
+
" }\n",
|
985 |
+
"\n",
|
986 |
+
" [theme=dark] .colab-df-convert {\n",
|
987 |
+
" background-color: #3B4455;\n",
|
988 |
+
" fill: #D2E3FC;\n",
|
989 |
+
" }\n",
|
990 |
+
"\n",
|
991 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
992 |
+
" background-color: #434B5C;\n",
|
993 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
994 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
995 |
+
" fill: #FFFFFF;\n",
|
996 |
+
" }\n",
|
997 |
+
" </style>\n",
|
998 |
+
"\n",
|
999 |
+
" <script>\n",
|
1000 |
+
" const buttonEl =\n",
|
1001 |
+
" document.querySelector('#df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad button.colab-df-convert');\n",
|
1002 |
+
" buttonEl.style.display =\n",
|
1003 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1004 |
+
"\n",
|
1005 |
+
" async function convertToInteractive(key) {\n",
|
1006 |
+
" const element = document.querySelector('#df-a30ccbef-fa5b-4c7c-b69a-4fffbe233fad');\n",
|
1007 |
+
" const dataTable =\n",
|
1008 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
1009 |
+
" [key], {});\n",
|
1010 |
+
" if (!dataTable) return;\n",
|
1011 |
+
"\n",
|
1012 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
1013 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
1014 |
+
" + ' to learn more about interactive tables.';\n",
|
1015 |
+
" element.innerHTML = '';\n",
|
1016 |
+
" dataTable['output_type'] = 'display_data';\n",
|
1017 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
1018 |
+
" const docLink = document.createElement('div');\n",
|
1019 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
1020 |
+
" element.appendChild(docLink);\n",
|
1021 |
+
" }\n",
|
1022 |
+
" </script>\n",
|
1023 |
+
" </div>\n",
|
1024 |
+
" </div>\n",
|
1025 |
+
" "
|
1026 |
+
]
|
1027 |
+
},
|
1028 |
+
"metadata": {},
|
1029 |
+
"execution_count": 22
|
1030 |
+
}
|
1031 |
+
]
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"cell_type": "code",
|
1035 |
+
"source": [
|
1036 |
+
"car.info()"
|
1037 |
+
],
|
1038 |
+
"metadata": {
|
1039 |
+
"colab": {
|
1040 |
+
"base_uri": "https://localhost:8080/"
|
1041 |
+
},
|
1042 |
+
"id": "zCqFEY-_V6Ki",
|
1043 |
+
"outputId": "ce435213-a276-4d46-d644-d4f0f23597b3"
|
1044 |
+
},
|
1045 |
+
"execution_count": null,
|
1046 |
+
"outputs": [
|
1047 |
+
{
|
1048 |
+
"output_type": "stream",
|
1049 |
+
"name": "stdout",
|
1050 |
+
"text": [
|
1051 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
1052 |
+
"Int64Index: 816 entries, 0 to 889\n",
|
1053 |
+
"Data columns (total 6 columns):\n",
|
1054 |
+
" # Column Non-Null Count Dtype \n",
|
1055 |
+
"--- ------ -------------- ----- \n",
|
1056 |
+
" 0 name 816 non-null object\n",
|
1057 |
+
" 1 company 816 non-null object\n",
|
1058 |
+
" 2 year 816 non-null int64 \n",
|
1059 |
+
" 3 Price 816 non-null int64 \n",
|
1060 |
+
" 4 kms_driven 816 non-null int64 \n",
|
1061 |
+
" 5 fuel_type 816 non-null object\n",
|
1062 |
+
"dtypes: int64(3), object(3)\n",
|
1063 |
+
"memory usage: 44.6+ KB\n"
|
1064 |
+
]
|
1065 |
+
}
|
1066 |
+
]
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"cell_type": "code",
|
1070 |
+
"source": [
|
1071 |
+
"car.describe()"
|
1072 |
+
],
|
1073 |
+
"metadata": {
|
1074 |
+
"colab": {
|
1075 |
+
"base_uri": "https://localhost:8080/",
|
1076 |
+
"height": 300
|
1077 |
+
},
|
1078 |
+
"id": "97ilwJBOWEWj",
|
1079 |
+
"outputId": "8841325e-30cb-47f2-82da-16a2bf9210e4"
|
1080 |
+
},
|
1081 |
+
"execution_count": null,
|
1082 |
+
"outputs": [
|
1083 |
+
{
|
1084 |
+
"output_type": "execute_result",
|
1085 |
+
"data": {
|
1086 |
+
"text/plain": [
|
1087 |
+
" year Price kms_driven\n",
|
1088 |
+
"count 816.000000 8.160000e+02 816.000000\n",
|
1089 |
+
"mean 2012.444853 4.117176e+05 46275.531863\n",
|
1090 |
+
"std 4.002992 4.751844e+05 34297.428044\n",
|
1091 |
+
"min 1995.000000 3.000000e+04 0.000000\n",
|
1092 |
+
"25% 2010.000000 1.750000e+05 27000.000000\n",
|
1093 |
+
"50% 2013.000000 2.999990e+05 41000.000000\n",
|
1094 |
+
"75% 2015.000000 4.912500e+05 56818.500000\n",
|
1095 |
+
"max 2019.000000 8.500003e+06 400000.000000"
|
1096 |
+
],
|
1097 |
+
"text/html": [
|
1098 |
+
"\n",
|
1099 |
+
" <div id=\"df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0\">\n",
|
1100 |
+
" <div class=\"colab-df-container\">\n",
|
1101 |
+
" <div>\n",
|
1102 |
+
"<style scoped>\n",
|
1103 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1104 |
+
" vertical-align: middle;\n",
|
1105 |
+
" }\n",
|
1106 |
+
"\n",
|
1107 |
+
" .dataframe tbody tr th {\n",
|
1108 |
+
" vertical-align: top;\n",
|
1109 |
+
" }\n",
|
1110 |
+
"\n",
|
1111 |
+
" .dataframe thead th {\n",
|
1112 |
+
" text-align: right;\n",
|
1113 |
+
" }\n",
|
1114 |
+
"</style>\n",
|
1115 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1116 |
+
" <thead>\n",
|
1117 |
+
" <tr style=\"text-align: right;\">\n",
|
1118 |
+
" <th></th>\n",
|
1119 |
+
" <th>year</th>\n",
|
1120 |
+
" <th>Price</th>\n",
|
1121 |
+
" <th>kms_driven</th>\n",
|
1122 |
+
" </tr>\n",
|
1123 |
+
" </thead>\n",
|
1124 |
+
" <tbody>\n",
|
1125 |
+
" <tr>\n",
|
1126 |
+
" <th>count</th>\n",
|
1127 |
+
" <td>816.000000</td>\n",
|
1128 |
+
" <td>8.160000e+02</td>\n",
|
1129 |
+
" <td>816.000000</td>\n",
|
1130 |
+
" </tr>\n",
|
1131 |
+
" <tr>\n",
|
1132 |
+
" <th>mean</th>\n",
|
1133 |
+
" <td>2012.444853</td>\n",
|
1134 |
+
" <td>4.117176e+05</td>\n",
|
1135 |
+
" <td>46275.531863</td>\n",
|
1136 |
+
" </tr>\n",
|
1137 |
+
" <tr>\n",
|
1138 |
+
" <th>std</th>\n",
|
1139 |
+
" <td>4.002992</td>\n",
|
1140 |
+
" <td>4.751844e+05</td>\n",
|
1141 |
+
" <td>34297.428044</td>\n",
|
1142 |
+
" </tr>\n",
|
1143 |
+
" <tr>\n",
|
1144 |
+
" <th>min</th>\n",
|
1145 |
+
" <td>1995.000000</td>\n",
|
1146 |
+
" <td>3.000000e+04</td>\n",
|
1147 |
+
" <td>0.000000</td>\n",
|
1148 |
+
" </tr>\n",
|
1149 |
+
" <tr>\n",
|
1150 |
+
" <th>25%</th>\n",
|
1151 |
+
" <td>2010.000000</td>\n",
|
1152 |
+
" <td>1.750000e+05</td>\n",
|
1153 |
+
" <td>27000.000000</td>\n",
|
1154 |
+
" </tr>\n",
|
1155 |
+
" <tr>\n",
|
1156 |
+
" <th>50%</th>\n",
|
1157 |
+
" <td>2013.000000</td>\n",
|
1158 |
+
" <td>2.999990e+05</td>\n",
|
1159 |
+
" <td>41000.000000</td>\n",
|
1160 |
+
" </tr>\n",
|
1161 |
+
" <tr>\n",
|
1162 |
+
" <th>75%</th>\n",
|
1163 |
+
" <td>2015.000000</td>\n",
|
1164 |
+
" <td>4.912500e+05</td>\n",
|
1165 |
+
" <td>56818.500000</td>\n",
|
1166 |
+
" </tr>\n",
|
1167 |
+
" <tr>\n",
|
1168 |
+
" <th>max</th>\n",
|
1169 |
+
" <td>2019.000000</td>\n",
|
1170 |
+
" <td>8.500003e+06</td>\n",
|
1171 |
+
" <td>400000.000000</td>\n",
|
1172 |
+
" </tr>\n",
|
1173 |
+
" </tbody>\n",
|
1174 |
+
"</table>\n",
|
1175 |
+
"</div>\n",
|
1176 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0')\"\n",
|
1177 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
1178 |
+
" style=\"display:none;\">\n",
|
1179 |
+
" \n",
|
1180 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
1181 |
+
" width=\"24px\">\n",
|
1182 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
1183 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
1184 |
+
" </svg>\n",
|
1185 |
+
" </button>\n",
|
1186 |
+
" \n",
|
1187 |
+
" <style>\n",
|
1188 |
+
" .colab-df-container {\n",
|
1189 |
+
" display:flex;\n",
|
1190 |
+
" flex-wrap:wrap;\n",
|
1191 |
+
" gap: 12px;\n",
|
1192 |
+
" }\n",
|
1193 |
+
"\n",
|
1194 |
+
" .colab-df-convert {\n",
|
1195 |
+
" background-color: #E8F0FE;\n",
|
1196 |
+
" border: none;\n",
|
1197 |
+
" border-radius: 50%;\n",
|
1198 |
+
" cursor: pointer;\n",
|
1199 |
+
" display: none;\n",
|
1200 |
+
" fill: #1967D2;\n",
|
1201 |
+
" height: 32px;\n",
|
1202 |
+
" padding: 0 0 0 0;\n",
|
1203 |
+
" width: 32px;\n",
|
1204 |
+
" }\n",
|
1205 |
+
"\n",
|
1206 |
+
" .colab-df-convert:hover {\n",
|
1207 |
+
" background-color: #E2EBFA;\n",
|
1208 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
1209 |
+
" fill: #174EA6;\n",
|
1210 |
+
" }\n",
|
1211 |
+
"\n",
|
1212 |
+
" [theme=dark] .colab-df-convert {\n",
|
1213 |
+
" background-color: #3B4455;\n",
|
1214 |
+
" fill: #D2E3FC;\n",
|
1215 |
+
" }\n",
|
1216 |
+
"\n",
|
1217 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
1218 |
+
" background-color: #434B5C;\n",
|
1219 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
1220 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
1221 |
+
" fill: #FFFFFF;\n",
|
1222 |
+
" }\n",
|
1223 |
+
" </style>\n",
|
1224 |
+
"\n",
|
1225 |
+
" <script>\n",
|
1226 |
+
" const buttonEl =\n",
|
1227 |
+
" document.querySelector('#df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0 button.colab-df-convert');\n",
|
1228 |
+
" buttonEl.style.display =\n",
|
1229 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1230 |
+
"\n",
|
1231 |
+
" async function convertToInteractive(key) {\n",
|
1232 |
+
" const element = document.querySelector('#df-28996f39-6ff2-4d3a-ba71-0ff17ab1a9d0');\n",
|
1233 |
+
" const dataTable =\n",
|
1234 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
1235 |
+
" [key], {});\n",
|
1236 |
+
" if (!dataTable) return;\n",
|
1237 |
+
"\n",
|
1238 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
1239 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
1240 |
+
" + ' to learn more about interactive tables.';\n",
|
1241 |
+
" element.innerHTML = '';\n",
|
1242 |
+
" dataTable['output_type'] = 'display_data';\n",
|
1243 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
1244 |
+
" const docLink = document.createElement('div');\n",
|
1245 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
1246 |
+
" element.appendChild(docLink);\n",
|
1247 |
+
" }\n",
|
1248 |
+
" </script>\n",
|
1249 |
+
" </div>\n",
|
1250 |
+
" </div>\n",
|
1251 |
+
" "
|
1252 |
+
]
|
1253 |
+
},
|
1254 |
+
"metadata": {},
|
1255 |
+
"execution_count": 24
|
1256 |
+
}
|
1257 |
+
]
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"cell_type": "code",
|
1261 |
+
"source": [
|
1262 |
+
"car=car[car['Price']<6e6]"
|
1263 |
+
],
|
1264 |
+
"metadata": {
|
1265 |
+
"id": "I6ZlcuaYWn_4"
|
1266 |
+
},
|
1267 |
+
"execution_count": null,
|
1268 |
+
"outputs": []
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"cell_type": "code",
|
1272 |
+
"source": [
|
1273 |
+
"car.to_csv('cleaned car.csv')"
|
1274 |
+
],
|
1275 |
+
"metadata": {
|
1276 |
+
"id": "OSATadwKngdW"
|
1277 |
+
},
|
1278 |
+
"execution_count": null,
|
1279 |
+
"outputs": []
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"cell_type": "markdown",
|
1283 |
+
"source": [
|
1284 |
+
"## Model"
|
1285 |
+
],
|
1286 |
+
"metadata": {
|
1287 |
+
"id": "cY-nLpwXoz09"
|
1288 |
+
}
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"cell_type": "code",
|
1292 |
+
"source": [
|
1293 |
+
"x=car.drop(columns='Price')\n",
|
1294 |
+
"y=car.Price"
|
1295 |
+
],
|
1296 |
+
"metadata": {
|
1297 |
+
"id": "KGCSWc8HoeGZ"
|
1298 |
+
},
|
1299 |
+
"execution_count": null,
|
1300 |
+
"outputs": []
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"cell_type": "code",
|
1304 |
+
"source": [
|
1305 |
+
"x"
|
1306 |
+
],
|
1307 |
+
"metadata": {
|
1308 |
+
"colab": {
|
1309 |
+
"base_uri": "https://localhost:8080/",
|
1310 |
+
"height": 424
|
1311 |
+
},
|
1312 |
+
"id": "as2r7WYxpFs5",
|
1313 |
+
"outputId": "ead73d06-997f-4c07-998a-6e6dd74f1761"
|
1314 |
+
},
|
1315 |
+
"execution_count": null,
|
1316 |
+
"outputs": [
|
1317 |
+
{
|
1318 |
+
"output_type": "execute_result",
|
1319 |
+
"data": {
|
1320 |
+
"text/plain": [
|
1321 |
+
" name company year kms_driven fuel_type\n",
|
1322 |
+
"0 Hyundai Santro Xing Hyundai 2007 45000 Petrol\n",
|
1323 |
+
"1 Mahindra Jeep CL550 Mahindra 2006 40 Diesel\n",
|
1324 |
+
"3 Hyundai Grand i10 Hyundai 2014 28000 Petrol\n",
|
1325 |
+
"4 Ford EcoSport Titanium Ford 2014 36000 Diesel\n",
|
1326 |
+
"6 Ford Figo Ford 2012 41000 Diesel\n",
|
1327 |
+
".. ... ... ... ... ...\n",
|
1328 |
+
"883 Maruti Suzuki Ritz Maruti 2011 50000 Petrol\n",
|
1329 |
+
"885 Tata Indica V2 Tata 2009 30000 Diesel\n",
|
1330 |
+
"886 Toyota Corolla Altis Toyota 2009 132000 Petrol\n",
|
1331 |
+
"888 Tata Zest XM Tata 2018 27000 Diesel\n",
|
1332 |
+
"889 Mahindra Quanto C8 Mahindra 2013 40000 Diesel\n",
|
1333 |
+
"\n",
|
1334 |
+
"[815 rows x 5 columns]"
|
1335 |
+
],
|
1336 |
+
"text/html": [
|
1337 |
+
"\n",
|
1338 |
+
" <div id=\"df-6d2e5997-e433-44e9-bdfb-c792d491d011\">\n",
|
1339 |
+
" <div class=\"colab-df-container\">\n",
|
1340 |
+
" <div>\n",
|
1341 |
+
"<style scoped>\n",
|
1342 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1343 |
+
" vertical-align: middle;\n",
|
1344 |
+
" }\n",
|
1345 |
+
"\n",
|
1346 |
+
" .dataframe tbody tr th {\n",
|
1347 |
+
" vertical-align: top;\n",
|
1348 |
+
" }\n",
|
1349 |
+
"\n",
|
1350 |
+
" .dataframe thead th {\n",
|
1351 |
+
" text-align: right;\n",
|
1352 |
+
" }\n",
|
1353 |
+
"</style>\n",
|
1354 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1355 |
+
" <thead>\n",
|
1356 |
+
" <tr style=\"text-align: right;\">\n",
|
1357 |
+
" <th></th>\n",
|
1358 |
+
" <th>name</th>\n",
|
1359 |
+
" <th>company</th>\n",
|
1360 |
+
" <th>year</th>\n",
|
1361 |
+
" <th>kms_driven</th>\n",
|
1362 |
+
" <th>fuel_type</th>\n",
|
1363 |
+
" </tr>\n",
|
1364 |
+
" </thead>\n",
|
1365 |
+
" <tbody>\n",
|
1366 |
+
" <tr>\n",
|
1367 |
+
" <th>0</th>\n",
|
1368 |
+
" <td>Hyundai Santro Xing</td>\n",
|
1369 |
+
" <td>Hyundai</td>\n",
|
1370 |
+
" <td>2007</td>\n",
|
1371 |
+
" <td>45000</td>\n",
|
1372 |
+
" <td>Petrol</td>\n",
|
1373 |
+
" </tr>\n",
|
1374 |
+
" <tr>\n",
|
1375 |
+
" <th>1</th>\n",
|
1376 |
+
" <td>Mahindra Jeep CL550</td>\n",
|
1377 |
+
" <td>Mahindra</td>\n",
|
1378 |
+
" <td>2006</td>\n",
|
1379 |
+
" <td>40</td>\n",
|
1380 |
+
" <td>Diesel</td>\n",
|
1381 |
+
" </tr>\n",
|
1382 |
+
" <tr>\n",
|
1383 |
+
" <th>3</th>\n",
|
1384 |
+
" <td>Hyundai Grand i10</td>\n",
|
1385 |
+
" <td>Hyundai</td>\n",
|
1386 |
+
" <td>2014</td>\n",
|
1387 |
+
" <td>28000</td>\n",
|
1388 |
+
" <td>Petrol</td>\n",
|
1389 |
+
" </tr>\n",
|
1390 |
+
" <tr>\n",
|
1391 |
+
" <th>4</th>\n",
|
1392 |
+
" <td>Ford EcoSport Titanium</td>\n",
|
1393 |
+
" <td>Ford</td>\n",
|
1394 |
+
" <td>2014</td>\n",
|
1395 |
+
" <td>36000</td>\n",
|
1396 |
+
" <td>Diesel</td>\n",
|
1397 |
+
" </tr>\n",
|
1398 |
+
" <tr>\n",
|
1399 |
+
" <th>6</th>\n",
|
1400 |
+
" <td>Ford Figo</td>\n",
|
1401 |
+
" <td>Ford</td>\n",
|
1402 |
+
" <td>2012</td>\n",
|
1403 |
+
" <td>41000</td>\n",
|
1404 |
+
" <td>Diesel</td>\n",
|
1405 |
+
" </tr>\n",
|
1406 |
+
" <tr>\n",
|
1407 |
+
" <th>...</th>\n",
|
1408 |
+
" <td>...</td>\n",
|
1409 |
+
" <td>...</td>\n",
|
1410 |
+
" <td>...</td>\n",
|
1411 |
+
" <td>...</td>\n",
|
1412 |
+
" <td>...</td>\n",
|
1413 |
+
" </tr>\n",
|
1414 |
+
" <tr>\n",
|
1415 |
+
" <th>883</th>\n",
|
1416 |
+
" <td>Maruti Suzuki Ritz</td>\n",
|
1417 |
+
" <td>Maruti</td>\n",
|
1418 |
+
" <td>2011</td>\n",
|
1419 |
+
" <td>50000</td>\n",
|
1420 |
+
" <td>Petrol</td>\n",
|
1421 |
+
" </tr>\n",
|
1422 |
+
" <tr>\n",
|
1423 |
+
" <th>885</th>\n",
|
1424 |
+
" <td>Tata Indica V2</td>\n",
|
1425 |
+
" <td>Tata</td>\n",
|
1426 |
+
" <td>2009</td>\n",
|
1427 |
+
" <td>30000</td>\n",
|
1428 |
+
" <td>Diesel</td>\n",
|
1429 |
+
" </tr>\n",
|
1430 |
+
" <tr>\n",
|
1431 |
+
" <th>886</th>\n",
|
1432 |
+
" <td>Toyota Corolla Altis</td>\n",
|
1433 |
+
" <td>Toyota</td>\n",
|
1434 |
+
" <td>2009</td>\n",
|
1435 |
+
" <td>132000</td>\n",
|
1436 |
+
" <td>Petrol</td>\n",
|
1437 |
+
" </tr>\n",
|
1438 |
+
" <tr>\n",
|
1439 |
+
" <th>888</th>\n",
|
1440 |
+
" <td>Tata Zest XM</td>\n",
|
1441 |
+
" <td>Tata</td>\n",
|
1442 |
+
" <td>2018</td>\n",
|
1443 |
+
" <td>27000</td>\n",
|
1444 |
+
" <td>Diesel</td>\n",
|
1445 |
+
" </tr>\n",
|
1446 |
+
" <tr>\n",
|
1447 |
+
" <th>889</th>\n",
|
1448 |
+
" <td>Mahindra Quanto C8</td>\n",
|
1449 |
+
" <td>Mahindra</td>\n",
|
1450 |
+
" <td>2013</td>\n",
|
1451 |
+
" <td>40000</td>\n",
|
1452 |
+
" <td>Diesel</td>\n",
|
1453 |
+
" </tr>\n",
|
1454 |
+
" </tbody>\n",
|
1455 |
+
"</table>\n",
|
1456 |
+
"<p>815 rows × 5 columns</p>\n",
|
1457 |
+
"</div>\n",
|
1458 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6d2e5997-e433-44e9-bdfb-c792d491d011')\"\n",
|
1459 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
1460 |
+
" style=\"display:none;\">\n",
|
1461 |
+
" \n",
|
1462 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
1463 |
+
" width=\"24px\">\n",
|
1464 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
1465 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
1466 |
+
" </svg>\n",
|
1467 |
+
" </button>\n",
|
1468 |
+
" \n",
|
1469 |
+
" <style>\n",
|
1470 |
+
" .colab-df-container {\n",
|
1471 |
+
" display:flex;\n",
|
1472 |
+
" flex-wrap:wrap;\n",
|
1473 |
+
" gap: 12px;\n",
|
1474 |
+
" }\n",
|
1475 |
+
"\n",
|
1476 |
+
" .colab-df-convert {\n",
|
1477 |
+
" background-color: #E8F0FE;\n",
|
1478 |
+
" border: none;\n",
|
1479 |
+
" border-radius: 50%;\n",
|
1480 |
+
" cursor: pointer;\n",
|
1481 |
+
" display: none;\n",
|
1482 |
+
" fill: #1967D2;\n",
|
1483 |
+
" height: 32px;\n",
|
1484 |
+
" padding: 0 0 0 0;\n",
|
1485 |
+
" width: 32px;\n",
|
1486 |
+
" }\n",
|
1487 |
+
"\n",
|
1488 |
+
" .colab-df-convert:hover {\n",
|
1489 |
+
" background-color: #E2EBFA;\n",
|
1490 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
1491 |
+
" fill: #174EA6;\n",
|
1492 |
+
" }\n",
|
1493 |
+
"\n",
|
1494 |
+
" [theme=dark] .colab-df-convert {\n",
|
1495 |
+
" background-color: #3B4455;\n",
|
1496 |
+
" fill: #D2E3FC;\n",
|
1497 |
+
" }\n",
|
1498 |
+
"\n",
|
1499 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
1500 |
+
" background-color: #434B5C;\n",
|
1501 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
1502 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
1503 |
+
" fill: #FFFFFF;\n",
|
1504 |
+
" }\n",
|
1505 |
+
" </style>\n",
|
1506 |
+
"\n",
|
1507 |
+
" <script>\n",
|
1508 |
+
" const buttonEl =\n",
|
1509 |
+
" document.querySelector('#df-6d2e5997-e433-44e9-bdfb-c792d491d011 button.colab-df-convert');\n",
|
1510 |
+
" buttonEl.style.display =\n",
|
1511 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1512 |
+
"\n",
|
1513 |
+
" async function convertToInteractive(key) {\n",
|
1514 |
+
" const element = document.querySelector('#df-6d2e5997-e433-44e9-bdfb-c792d491d011');\n",
|
1515 |
+
" const dataTable =\n",
|
1516 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
1517 |
+
" [key], {});\n",
|
1518 |
+
" if (!dataTable) return;\n",
|
1519 |
+
"\n",
|
1520 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
1521 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
1522 |
+
" + ' to learn more about interactive tables.';\n",
|
1523 |
+
" element.innerHTML = '';\n",
|
1524 |
+
" dataTable['output_type'] = 'display_data';\n",
|
1525 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
1526 |
+
" const docLink = document.createElement('div');\n",
|
1527 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
1528 |
+
" element.appendChild(docLink);\n",
|
1529 |
+
" }\n",
|
1530 |
+
" </script>\n",
|
1531 |
+
" </div>\n",
|
1532 |
+
" </div>\n",
|
1533 |
+
" "
|
1534 |
+
]
|
1535 |
+
},
|
1536 |
+
"metadata": {},
|
1537 |
+
"execution_count": 28
|
1538 |
+
}
|
1539 |
+
]
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"cell_type": "code",
|
1543 |
+
"source": [
|
1544 |
+
"y"
|
1545 |
+
],
|
1546 |
+
"metadata": {
|
1547 |
+
"colab": {
|
1548 |
+
"base_uri": "https://localhost:8080/"
|
1549 |
+
},
|
1550 |
+
"id": "EYo6tsKQpIPz",
|
1551 |
+
"outputId": "8a5237c2-a990-4df9-bfb6-c86013be1092"
|
1552 |
+
},
|
1553 |
+
"execution_count": null,
|
1554 |
+
"outputs": [
|
1555 |
+
{
|
1556 |
+
"output_type": "execute_result",
|
1557 |
+
"data": {
|
1558 |
+
"text/plain": [
|
1559 |
+
"0 80000\n",
|
1560 |
+
"1 425000\n",
|
1561 |
+
"3 325000\n",
|
1562 |
+
"4 575000\n",
|
1563 |
+
"6 175000\n",
|
1564 |
+
" ... \n",
|
1565 |
+
"883 270000\n",
|
1566 |
+
"885 110000\n",
|
1567 |
+
"886 300000\n",
|
1568 |
+
"888 260000\n",
|
1569 |
+
"889 390000\n",
|
1570 |
+
"Name: Price, Length: 815, dtype: int64"
|
1571 |
+
]
|
1572 |
+
},
|
1573 |
+
"metadata": {},
|
1574 |
+
"execution_count": 29
|
1575 |
+
}
|
1576 |
+
]
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"cell_type": "code",
|
1580 |
+
"source": [
|
1581 |
+
"from sklearn.model_selection import train_test_split\n",
|
1582 |
+
"\n",
|
1583 |
+
"x_train, x_test,y_train,y_test = train_test_split(x,y, test_size=0.2, random_state=1)"
|
1584 |
+
],
|
1585 |
+
"metadata": {
|
1586 |
+
"id": "GU4fNOrzpLnE"
|
1587 |
+
},
|
1588 |
+
"execution_count": null,
|
1589 |
+
"outputs": []
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"cell_type": "code",
|
1593 |
+
"source": [
|
1594 |
+
"from sklearn.linear_model import LinearRegression\n",
|
1595 |
+
"from sklearn.metrics import r2_score\n",
|
1596 |
+
"from sklearn.preprocessing import OneHotEncoder\n",
|
1597 |
+
"from sklearn.compose import make_column_transformer\n",
|
1598 |
+
"from sklearn.pipeline import make_pipeline"
|
1599 |
+
],
|
1600 |
+
"metadata": {
|
1601 |
+
"id": "nZB719Azps7t"
|
1602 |
+
},
|
1603 |
+
"execution_count": null,
|
1604 |
+
"outputs": []
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"cell_type": "code",
|
1608 |
+
"source": [
|
1609 |
+
"ohe = OneHotEncoder()\n",
|
1610 |
+
"\n",
|
1611 |
+
"ohe.fit(x[['name','company','fuel_type']])"
|
1612 |
+
],
|
1613 |
+
"metadata": {
|
1614 |
+
"colab": {
|
1615 |
+
"base_uri": "https://localhost:8080/",
|
1616 |
+
"height": 75
|
1617 |
+
},
|
1618 |
+
"id": "-3CjyNTrqDq0",
|
1619 |
+
"outputId": "13aa2a5a-5430-46bf-c9bc-80bc5b173237"
|
1620 |
+
},
|
1621 |
+
"execution_count": null,
|
1622 |
+
"outputs": [
|
1623 |
+
{
|
1624 |
+
"output_type": "execute_result",
|
1625 |
+
"data": {
|
1626 |
+
"text/plain": [
|
1627 |
+
"OneHotEncoder()"
|
1628 |
+
],
|
1629 |
+
"text/html": [
|
1630 |
+
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>OneHotEncoder()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">OneHotEncoder</label><div class=\"sk-toggleable__content\"><pre>OneHotEncoder()</pre></div></div></div></div></div>"
|
1631 |
+
]
|
1632 |
+
},
|
1633 |
+
"metadata": {},
|
1634 |
+
"execution_count": 32
|
1635 |
+
}
|
1636 |
+
]
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"cell_type": "code",
|
1640 |
+
"source": [
|
1641 |
+
"column_trans = make_column_transformer((OneHotEncoder(categories=ohe.categories_),['name','company','fuel_type']), remainder='passthrough')"
|
1642 |
+
],
|
1643 |
+
"metadata": {
|
1644 |
+
"id": "Lz5Oa5CVryOD"
|
1645 |
+
},
|
1646 |
+
"execution_count": null,
|
1647 |
+
"outputs": []
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"cell_type": "code",
|
1651 |
+
"source": [
|
1652 |
+
"lr=LinearRegression()"
|
1653 |
+
],
|
1654 |
+
"metadata": {
|
1655 |
+
"id": "h2-fyidUsBgq"
|
1656 |
+
},
|
1657 |
+
"execution_count": null,
|
1658 |
+
"outputs": []
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"cell_type": "code",
|
1662 |
+
"source": [
|
1663 |
+
"pipe=make_pipeline(column_trans,lr)"
|
1664 |
+
],
|
1665 |
+
"metadata": {
|
1666 |
+
"id": "ItK-P-f_uPL4"
|
1667 |
+
},
|
1668 |
+
"execution_count": null,
|
1669 |
+
"outputs": []
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"cell_type": "code",
|
1673 |
+
"source": [
|
1674 |
+
"pipe.fit(x_train,y_train)"
|
1675 |
+
],
|
1676 |
+
"metadata": {
|
1677 |
+
"colab": {
|
1678 |
+
"base_uri": "https://localhost:8080/",
|
1679 |
+
"height": 192
|
1680 |
+
},
|
1681 |
+
"id": "lFvb7w-hulX3",
|
1682 |
+
"outputId": "d755c75f-4aec-4f90-cd4e-c096b17e002a"
|
1683 |
+
},
|
1684 |
+
"execution_count": null,
|
1685 |
+
"outputs": [
|
1686 |
+
{
|
1687 |
+
"output_type": "execute_result",
|
1688 |
+
"data": {
|
1689 |
+
"text/plain": [
|
1690 |
+
"Pipeline(steps=[('columntransformer',\n",
|
1691 |
+
" ColumnTransformer(remainder='passthrough',\n",
|
1692 |
+
" transformers=[('onehotencoder',\n",
|
1693 |
+
" OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n",
|
1694 |
+
" 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n",
|
1695 |
+
" 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n",
|
1696 |
+
" 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n",
|
1697 |
+
" array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n",
|
1698 |
+
" 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n",
|
1699 |
+
" 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n",
|
1700 |
+
" 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n",
|
1701 |
+
" dtype=object),\n",
|
1702 |
+
" array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n",
|
1703 |
+
" ['name', 'company',\n",
|
1704 |
+
" 'fuel_type'])])),\n",
|
1705 |
+
" ('linearregression', LinearRegression())])"
|
1706 |
+
],
|
1707 |
+
"text/html": [
|
1708 |
+
"<style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('columntransformer',\n",
|
1709 |
+
" ColumnTransformer(remainder='passthrough',\n",
|
1710 |
+
" transformers=[('onehotencoder',\n",
|
1711 |
+
" OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n",
|
1712 |
+
" 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n",
|
1713 |
+
" 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n",
|
1714 |
+
" 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n",
|
1715 |
+
" array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n",
|
1716 |
+
" 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n",
|
1717 |
+
" 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n",
|
1718 |
+
" 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n",
|
1719 |
+
" dtype=object),\n",
|
1720 |
+
" array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n",
|
1721 |
+
" ['name', 'company',\n",
|
1722 |
+
" 'fuel_type'])])),\n",
|
1723 |
+
" ('linearregression', LinearRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-9\" type=\"checkbox\" ><label for=\"sk-estimator-id-9\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('columntransformer',\n",
|
1724 |
+
" ColumnTransformer(remainder='passthrough',\n",
|
1725 |
+
" transformers=[('onehotencoder',\n",
|
1726 |
+
" OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n",
|
1727 |
+
" 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n",
|
1728 |
+
" 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n",
|
1729 |
+
" 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n",
|
1730 |
+
" array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n",
|
1731 |
+
" 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n",
|
1732 |
+
" 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n",
|
1733 |
+
" 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n",
|
1734 |
+
" dtype=object),\n",
|
1735 |
+
" array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n",
|
1736 |
+
" ['name', 'company',\n",
|
1737 |
+
" 'fuel_type'])])),\n",
|
1738 |
+
" ('linearregression', LinearRegression())])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-10\" type=\"checkbox\" ><label for=\"sk-estimator-id-10\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">columntransformer: ColumnTransformer</label><div class=\"sk-toggleable__content\"><pre>ColumnTransformer(remainder='passthrough',\n",
|
1739 |
+
" transformers=[('onehotencoder',\n",
|
1740 |
+
" OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n",
|
1741 |
+
" 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n",
|
1742 |
+
" 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n",
|
1743 |
+
" 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat Diesel',\n",
|
1744 |
+
" 'Chevrolet Beat LS', 'Chevrolet B...\n",
|
1745 |
+
" 'Volkswagen Vento Konekt', 'Volvo S80 Summum'], dtype=object),\n",
|
1746 |
+
" array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n",
|
1747 |
+
" 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n",
|
1748 |
+
" 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n",
|
1749 |
+
" 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n",
|
1750 |
+
" dtype=object),\n",
|
1751 |
+
" array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n",
|
1752 |
+
" ['name', 'company', 'fuel_type'])])</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-11\" type=\"checkbox\" ><label for=\"sk-estimator-id-11\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">onehotencoder</label><div class=\"sk-toggleable__content\"><pre>['name', 'company', 'fuel_type']</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-12\" type=\"checkbox\" ><label for=\"sk-estimator-id-12\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">OneHotEncoder</label><div class=\"sk-toggleable__content\"><pre>OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n",
|
1753 |
+
" 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n",
|
1754 |
+
" 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n",
|
1755 |
+
" 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat Diesel',\n",
|
1756 |
+
" 'Chevrolet Beat LS', 'Chevrolet Beat LT', 'Chevrolet Beat PS',\n",
|
1757 |
+
" 'Chevrolet Cruze LTZ', 'Chevrolet Enjoy', 'Chevrolet E...\n",
|
1758 |
+
" 'Volkswagen Vento Comfortline', 'Volkswagen Vento Highline',\n",
|
1759 |
+
" 'Volkswagen Vento Konekt', 'Volvo S80 Summum'], dtype=object),\n",
|
1760 |
+
" array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n",
|
1761 |
+
" 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n",
|
1762 |
+
" 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n",
|
1763 |
+
" 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n",
|
1764 |
+
" dtype=object),\n",
|
1765 |
+
" array(['Diesel', 'LPG', 'Petrol'], dtype=object)])</pre></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-13\" type=\"checkbox\" ><label for=\"sk-estimator-id-13\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">remainder</label><div class=\"sk-toggleable__content\"><pre>['year', 'kms_driven']</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-14\" type=\"checkbox\" ><label for=\"sk-estimator-id-14\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">passthrough</label><div class=\"sk-toggleable__content\"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-15\" type=\"checkbox\" ><label for=\"sk-estimator-id-15\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LinearRegression</label><div class=\"sk-toggleable__content\"><pre>LinearRegression()</pre></div></div></div></div></div></div></div>"
|
1766 |
+
]
|
1767 |
+
},
|
1768 |
+
"metadata": {},
|
1769 |
+
"execution_count": 41
|
1770 |
+
}
|
1771 |
+
]
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"cell_type": "code",
|
1775 |
+
"source": [
|
1776 |
+
"y_pred=pipe.predict(x_test)"
|
1777 |
+
],
|
1778 |
+
"metadata": {
|
1779 |
+
"id": "sGdoVcQ7uyL7"
|
1780 |
+
},
|
1781 |
+
"execution_count": null,
|
1782 |
+
"outputs": []
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"cell_type": "code",
|
1786 |
+
"source": [
|
1787 |
+
"r2_score(y_test,y_pred)"
|
1788 |
+
],
|
1789 |
+
"metadata": {
|
1790 |
+
"colab": {
|
1791 |
+
"base_uri": "https://localhost:8080/"
|
1792 |
+
},
|
1793 |
+
"id": "w8Tj31iru6v-",
|
1794 |
+
"outputId": "6f411965-f819-45f4-f97d-28fcabaf1f2f"
|
1795 |
+
},
|
1796 |
+
"execution_count": null,
|
1797 |
+
"outputs": [
|
1798 |
+
{
|
1799 |
+
"output_type": "execute_result",
|
1800 |
+
"data": {
|
1801 |
+
"text/plain": [
|
1802 |
+
"0.4786019553698676"
|
1803 |
+
]
|
1804 |
+
},
|
1805 |
+
"metadata": {},
|
1806 |
+
"execution_count": 44
|
1807 |
+
}
|
1808 |
+
]
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"cell_type": "code",
|
1812 |
+
"source": [
|
1813 |
+
"r2_scores= []\n",
|
1814 |
+
"random_i=[]\n",
|
1815 |
+
"for i in range(500):\n",
|
1816 |
+
" x_train, x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=i)\n",
|
1817 |
+
" lr=LinearRegression()\n",
|
1818 |
+
" pipe=make_pipeline(column_trans,lr)\n",
|
1819 |
+
" pipe.fit(x_train,y_train)\n",
|
1820 |
+
" y_pred=pipe.predict(x_test)\n",
|
1821 |
+
" r2_scores.append(r2_score(y_test,y_pred))\n",
|
1822 |
+
" random_i.append(i)"
|
1823 |
+
],
|
1824 |
+
"metadata": {
|
1825 |
+
"id": "Kdo3Pd9Wv2EE"
|
1826 |
+
},
|
1827 |
+
"execution_count": null,
|
1828 |
+
"outputs": []
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"cell_type": "code",
|
1832 |
+
"source": [
|
1833 |
+
"random_data= pd.DataFrame({'Score':r2_scores,'Random_value':random_i})"
|
1834 |
+
],
|
1835 |
+
"metadata": {
|
1836 |
+
"id": "IO3IvSfVxsBj"
|
1837 |
+
},
|
1838 |
+
"execution_count": null,
|
1839 |
+
"outputs": []
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"cell_type": "code",
|
1843 |
+
"source": [
|
1844 |
+
"np.argmax(r2_scores)"
|
1845 |
+
],
|
1846 |
+
"metadata": {
|
1847 |
+
"colab": {
|
1848 |
+
"base_uri": "https://localhost:8080/"
|
1849 |
+
},
|
1850 |
+
"id": "fChp9sltzzpj",
|
1851 |
+
"outputId": "3077a482-b60c-43da-a3f9-3b1f0fe1998c"
|
1852 |
+
},
|
1853 |
+
"execution_count": null,
|
1854 |
+
"outputs": [
|
1855 |
+
{
|
1856 |
+
"output_type": "execute_result",
|
1857 |
+
"data": {
|
1858 |
+
"text/plain": [
|
1859 |
+
"433"
|
1860 |
+
]
|
1861 |
+
},
|
1862 |
+
"metadata": {},
|
1863 |
+
"execution_count": 54
|
1864 |
+
}
|
1865 |
+
]
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"cell_type": "code",
|
1869 |
+
"source": [
|
1870 |
+
"r2_scores[433]"
|
1871 |
+
],
|
1872 |
+
"metadata": {
|
1873 |
+
"colab": {
|
1874 |
+
"base_uri": "https://localhost:8080/"
|
1875 |
+
},
|
1876 |
+
"id": "bWaARfLmz6Yh",
|
1877 |
+
"outputId": "93925ab2-dffc-40d2-d1e2-87866b8b51bf"
|
1878 |
+
},
|
1879 |
+
"execution_count": null,
|
1880 |
+
"outputs": [
|
1881 |
+
{
|
1882 |
+
"output_type": "execute_result",
|
1883 |
+
"data": {
|
1884 |
+
"text/plain": [
|
1885 |
+
"0.8456515104452564"
|
1886 |
+
]
|
1887 |
+
},
|
1888 |
+
"metadata": {},
|
1889 |
+
"execution_count": 55
|
1890 |
+
}
|
1891 |
+
]
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"cell_type": "code",
|
1895 |
+
"source": [
|
1896 |
+
"x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=np.argmax(r2_scores))\n",
|
1897 |
+
"lr=LinearRegression()\n",
|
1898 |
+
"pipe=make_pipeline(column_trans,lr)\n",
|
1899 |
+
"pipe.fit(x_train,y_train)\n",
|
1900 |
+
"y_pred=pipe.predict(x_test)\n",
|
1901 |
+
"r2_score(y_test,y_pred)"
|
1902 |
+
],
|
1903 |
+
"metadata": {
|
1904 |
+
"colab": {
|
1905 |
+
"base_uri": "https://localhost:8080/"
|
1906 |
+
},
|
1907 |
+
"id": "JUb6oA4x0dTR",
|
1908 |
+
"outputId": "759bdbd3-ccc8-43c6-85f3-5d8ea4047482"
|
1909 |
+
},
|
1910 |
+
"execution_count": null,
|
1911 |
+
"outputs": [
|
1912 |
+
{
|
1913 |
+
"output_type": "execute_result",
|
1914 |
+
"data": {
|
1915 |
+
"text/plain": [
|
1916 |
+
"0.8456515104452564"
|
1917 |
+
]
|
1918 |
+
},
|
1919 |
+
"metadata": {},
|
1920 |
+
"execution_count": 56
|
1921 |
+
}
|
1922 |
+
]
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"cell_type": "code",
|
1926 |
+
"source": [
|
1927 |
+
"import pickle"
|
1928 |
+
],
|
1929 |
+
"metadata": {
|
1930 |
+
"id": "R4j2B3Xx7Bm_"
|
1931 |
+
},
|
1932 |
+
"execution_count": null,
|
1933 |
+
"outputs": []
|
1934 |
+
},
|
1935 |
+
{
|
1936 |
+
"cell_type": "code",
|
1937 |
+
"source": [
|
1938 |
+
"pickle.dump(pipe,open('LinearRegressionModel.pkl','wb'))"
|
1939 |
+
],
|
1940 |
+
"metadata": {
|
1941 |
+
"id": "JOTFnco_7H65"
|
1942 |
+
},
|
1943 |
+
"execution_count": null,
|
1944 |
+
"outputs": []
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"cell_type": "code",
|
1948 |
+
"source": [
|
1949 |
+
"pipe.predict(pd.DataFrame([['Maruti Suzuki Swift','Maruti',2019,100,'Petrol']],columns=['name','company','year','kms_driven','fuel_type']))"
|
1950 |
+
],
|
1951 |
+
"metadata": {
|
1952 |
+
"colab": {
|
1953 |
+
"base_uri": "https://localhost:8080/"
|
1954 |
+
},
|
1955 |
+
"id": "L6PM14NG7ZWI",
|
1956 |
+
"outputId": "bc568fdb-bb40-436c-c6ce-caf4e9e19026"
|
1957 |
+
},
|
1958 |
+
"execution_count": null,
|
1959 |
+
"outputs": [
|
1960 |
+
{
|
1961 |
+
"output_type": "execute_result",
|
1962 |
+
"data": {
|
1963 |
+
"text/plain": [
|
1964 |
+
"array([459113.49353657])"
|
1965 |
+
]
|
1966 |
+
},
|
1967 |
+
"metadata": {},
|
1968 |
+
"execution_count": 66
|
1969 |
+
}
|
1970 |
+
]
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"cell_type": "code",
|
1974 |
+
"source": [],
|
1975 |
+
"metadata": {
|
1976 |
+
"id": "UKYqrC2n8ZzO"
|
1977 |
+
},
|
1978 |
+
"execution_count": null,
|
1979 |
+
"outputs": []
|
1980 |
+
}
|
1981 |
+
]
|
1982 |
+
}
|
LinearRegressionModel.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7458627b95185a80cb137cfe4d335f586e9bb20fa840b4aee82d7a44b614307b
|
3 |
+
size 11316
|
application.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flask, pandas, sci-kit learn, pickle-mixin
|
2 |
+
from flask import Flask, render_template, request
|
3 |
+
import pandas as pd
|
4 |
+
import pickle
|
5 |
+
import sklearn
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
app =Flask(__name__)
|
9 |
+
|
10 |
+
model = pickle.load(open('LinearRegressionModel.pkl','rb'))
|
11 |
+
car = pd.read_csv('cleaned car.csv')
|
12 |
+
|
13 |
+
@app.route('/')
|
14 |
+
def index():
|
15 |
+
companies = sorted(car['company'].unique())
|
16 |
+
car_models = sorted(car['name'].unique())
|
17 |
+
year = sorted(car['year'].unique(), reverse=True)
|
18 |
+
fuel_type = car['fuel_type'].unique()
|
19 |
+
companies.insert(0,'Select Company')
|
20 |
+
return render_template('index.html', companies=companies, car_models=car_models,years=year,fuel_types=fuel_type)
|
21 |
+
|
22 |
+
@app.route('/predict',methods=['POST'])
|
23 |
+
def predict():
|
24 |
+
company= request.form.get('company')
|
25 |
+
car_model = request.form.get('car_model')
|
26 |
+
year = int(request.form.get('year'))
|
27 |
+
fuel_type = request.form.get('fuel_type')
|
28 |
+
kms_driven = int(request.form.get('kilo_driven'))
|
29 |
+
|
30 |
+
prediction = model.predict(pd.DataFrame([[car_model, company,year,kms_driven,fuel_type]], columns=['name','company','year','kms_driven','fuel_type']))
|
31 |
+
|
32 |
+
return str(np.round(prediction[0],2))
|
33 |
+
|
34 |
+
|
35 |
+
if __name__=='__main__':
|
36 |
+
app.run(debug=True)
|
cleaned car.csv
ADDED
@@ -0,0 +1,816 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,name,company,year,Price,kms_driven,fuel_type
|
2 |
+
0,Hyundai Santro Xing,Hyundai,2007,80000,45000,Petrol
|
3 |
+
1,Mahindra Jeep CL550,Mahindra,2006,425000,40,Diesel
|
4 |
+
3,Hyundai Grand i10,Hyundai,2014,325000,28000,Petrol
|
5 |
+
4,Ford EcoSport Titanium,Ford,2014,575000,36000,Diesel
|
6 |
+
6,Ford Figo,Ford,2012,175000,41000,Diesel
|
7 |
+
7,Hyundai Eon,Hyundai,2013,190000,25000,Petrol
|
8 |
+
8,Ford EcoSport Ambiente,Ford,2016,830000,24530,Diesel
|
9 |
+
9,Maruti Suzuki Alto,Maruti,2015,250000,60000,Petrol
|
10 |
+
10,Skoda Fabia Classic,Skoda,2010,182000,60000,Petrol
|
11 |
+
11,Maruti Suzuki Stingray,Maruti,2015,315000,30000,Petrol
|
12 |
+
12,Hyundai Elite i20,Hyundai,2014,415000,32000,Petrol
|
13 |
+
13,Mahindra Scorpio SLE,Mahindra,2015,320000,48660,Diesel
|
14 |
+
14,Hyundai Santro Xing,Hyundai,2007,80000,45000,Petrol
|
15 |
+
15,Mahindra Jeep CL550,Mahindra,2006,425000,40,Diesel
|
16 |
+
16,Audi A8,Audi,2017,1000000,4000,Petrol
|
17 |
+
17,Audi Q7,Audi,2014,500000,16934,Diesel
|
18 |
+
18,Mahindra Scorpio S10,Mahindra,2016,350000,43000,Diesel
|
19 |
+
19,Maruti Suzuki Alto,Maruti,2014,160000,35550,Petrol
|
20 |
+
20,Mahindra Scorpio S10,Mahindra,2016,350000,43000,Diesel
|
21 |
+
21,Mahindra Scorpio S10,Mahindra,2016,310000,39522,Diesel
|
22 |
+
22,Maruti Suzuki Alto,Maruti,2015,75000,39000,Petrol
|
23 |
+
23,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol
|
24 |
+
24,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol
|
25 |
+
25,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol
|
26 |
+
26,Maruti Suzuki Alto,Maruti,2017,190000,72000,Petrol
|
27 |
+
27,Maruti Suzuki Vitara,Maruti,2016,290000,15975,Diesel
|
28 |
+
28,Maruti Suzuki Alto,Maruti,2008,95000,70000,Petrol
|
29 |
+
29,Mahindra Bolero DI,Mahindra,2017,180000,23452,Diesel
|
30 |
+
30,Maruti Suzuki Swift,Maruti,2014,385000,35522,Diesel
|
31 |
+
31,Mahindra Scorpio S10,Mahindra,2015,250000,48508,Diesel
|
32 |
+
32,Maruti Suzuki Swift,Maruti,2017,180000,15487,Petrol
|
33 |
+
33,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
|
34 |
+
34,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
|
35 |
+
35,Toyota Innova 2.0,Toyota,2012,650000,82000,Diesel
|
36 |
+
36,Renault Lodgy 85,Renault,2018,689999,20000,Diesel
|
37 |
+
37,Skoda Yeti Ambition,Skoda,2012,448000,68000,Diesel
|
38 |
+
38,Maruti Suzuki Baleno,Maruti,2017,549000,32000,Diesel
|
39 |
+
39,Renault Duster 110,Renault,2012,501000,38000,Diesel
|
40 |
+
40,Renault Duster 85,Renault,2013,489999,27000,Diesel
|
41 |
+
41,Honda City 1.5,Honda,2011,280000,33000,Petrol
|
42 |
+
42,Maruti Suzuki Alto,Maruti,2015,250000,60000,Petrol
|
43 |
+
43,Maruti Suzuki Dzire,Maruti,2013,349999,46000,Diesel
|
44 |
+
44,Honda Amaze,Honda,2013,284999,46000,Diesel
|
45 |
+
45,Honda Amaze 1.5,Honda,2015,345000,36000,Diesel
|
46 |
+
46,Honda City,Honda,2015,499999,55000,Petrol
|
47 |
+
47,Datsun Redi GO,Datsun,2017,235000,16000,Petrol
|
48 |
+
48,Maruti Suzuki SX4,Maruti,2010,249999,36000,Petrol
|
49 |
+
49,Mitsubishi Pajero Sport,Mitsubishi,2015,1475000,47000,Diesel
|
50 |
+
50,Mahindra Bolero DI,Mahindra,2017,180000,23452,Diesel
|
51 |
+
51,Maruti Suzuki Swift,Maruti,2014,385000,35522,Diesel
|
52 |
+
52,Mahindra Scorpio S10,Mahindra,2015,250000,48508,Diesel
|
53 |
+
53,Maruti Suzuki Swift,Maruti,2017,180000,15487,Petrol
|
54 |
+
54,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
|
55 |
+
55,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol
|
56 |
+
56,Mahindra Scorpio S10,Mahindra,2015,395000,35000,Diesel
|
57 |
+
57,Maruti Suzuki Swift,Maruti,2017,220000,30874,Petrol
|
58 |
+
58,Honda City ZX,Honda,2017,170000,15000,Diesel
|
59 |
+
59,Maruti Suzuki Wagon,Maruti,2013,85000,29685,Petrol
|
60 |
+
60,Ford Figo,Ford,2012,175000,41000,Diesel
|
61 |
+
61,Hyundai Eon,Hyundai,2013,190000,25000,Petrol
|
62 |
+
62,Tata Indigo eCS,Tata,2017,200000,130000,Diesel
|
63 |
+
63,Ford EcoSport Ambiente,Ford,2016,830000,24530,Diesel
|
64 |
+
64,Tata Indigo eCS,Tata,2017,200000,130000,Diesel
|
65 |
+
65,Mahindra Scorpio SLE,Mahindra,2012,570000,19000,Diesel
|
66 |
+
66,Volkswagen Polo Highline,Volkswagen,2014,315000,60000,Petrol
|
67 |
+
67,Skoda Fabia Classic,Skoda,2010,182000,60000,Petrol
|
68 |
+
68,Maruti Suzuki Stingray,Maruti,2015,315000,30000,Petrol
|
69 |
+
70,Chevrolet Spark LS,Chevrolet,2010,110000,41000,Petrol
|
70 |
+
71,Renault Duster 110PS,Renault,2012,501000,35000,Diesel
|
71 |
+
72,Honda City,Honda,2015,448999,54000,Petrol
|
72 |
+
73,Mini Cooper S,Mini,2013,1891111,13000,Petrol
|
73 |
+
74,Datsun Redi GO,Datsun,2017,235000,16000,Petrol
|
74 |
+
75,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel
|
75 |
+
76,Honda Amaze,Honda,2015,344999,22000,Petrol
|
76 |
+
77,Honda Amaze,Honda,2015,344999,22000,Petrol
|
77 |
+
78,Renault Duster,Renault,2014,449999,50000,Diesel
|
78 |
+
79,Mini Cooper S,Mini,2013,1891111,13500,Petrol
|
79 |
+
80,Mahindra Scorpio S4,Mahindra,2015,865000,30000,Diesel
|
80 |
+
81,Mahindra Scorpio VLX,Mahindra,2014,699000,50000,Diesel
|
81 |
+
82,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel
|
82 |
+
83,Ford EcoSport,Ford,2017,489999,39000,Petrol
|
83 |
+
84,Honda Brio,Honda,2012,224999,30000,Petrol
|
84 |
+
86,Volkswagen Vento Highline,Volkswagen,2019,1200000,3600,Diesel
|
85 |
+
87,Hyundai i20 Magna,Hyundai,2009,195000,32000,Petrol
|
86 |
+
88,Toyota Corolla Altis,Toyota,2010,351000,38000,Diesel
|
87 |
+
89,Hyundai Verna Transform,Hyundai,2008,160000,45000,Petrol
|
88 |
+
90,Toyota Corolla Altis,Toyota,2009,240000,35000,Petrol
|
89 |
+
91,Honda City 1.5,Honda,2005,90000,50000,Petrol
|
90 |
+
92,Hyundai Elite i20,Hyundai,2014,415000,32000,Petrol
|
91 |
+
93,Skoda Fabia 1.2L,Skoda,2011,155000,45863,Diesel
|
92 |
+
94,BMW 3 Series,BMW,2011,600000,60500,Petrol
|
93 |
+
95,Maruti Suzuki A,Maruti,2011,189500,12500,Petrol
|
94 |
+
96,Toyota Etios GD,Toyota,2013,350000,60000,Diesel
|
95 |
+
97,Ford Figo Diesel,Ford,2012,210000,35000,Diesel
|
96 |
+
98,Maruti Suzuki Swift,Maruti,2014,390000,35000,Petrol
|
97 |
+
99,Chevrolet Beat LT,Chevrolet,2012,135000,45000,Diesel
|
98 |
+
100,BMW 7 Series,BMW,2009,1600000,35000,Petrol
|
99 |
+
101,Mahindra XUV500 W8,Mahindra,2013,701000,38000,Diesel
|
100 |
+
102,Hyundai i10 Magna,Hyundai,2014,265000,18000,Petrol
|
101 |
+
103,Hyundai Verna Fluidic,Hyundai,2015,525000,35000,Diesel
|
102 |
+
104,Maruti Suzuki Swift,Maruti,2013,372000,13349,Petrol
|
103 |
+
105,Maruti Suzuki Ertiga,Maruti,2016,635000,29000,Petrol
|
104 |
+
106,Ford EcoSport Titanium,Ford,2014,550000,44000,Diesel
|
105 |
+
107,Maruti Suzuki Ertiga,Maruti,2016,575000,29000,Petrol
|
106 |
+
108,Maruti Suzuki Ertiga,Maruti,2013,485000,42000,Diesel
|
107 |
+
109,Maruti Suzuki Alto,Maruti,2012,155000,14000,Petrol
|
108 |
+
110,Hyundai Grand i10,Hyundai,2014,345000,49000,Diesel
|
109 |
+
111,Honda Amaze 1.2,Honda,2014,325000,42000,Petrol
|
110 |
+
112,Hyundai i20 Asta,Hyundai,2012,329500,36200,Diesel
|
111 |
+
113,Ford Figo Diesel,Ford,2014,195000,50000,Diesel
|
112 |
+
114,Maruti Suzuki Eeco,Maruti,2015,251111,55000,Petrol
|
113 |
+
115,Maruti Suzuki Ertiga,Maruti,2014,569999,45000,Petrol
|
114 |
+
116,Maruti Suzuki Esteem,Maruti,2007,69999,51000,Petrol
|
115 |
+
117,Maruti Suzuki Ritz,Maruti,2014,299999,19000,Petrol
|
116 |
+
118,Maruti Suzuki Dzire,Maruti,2009,220000,46000,Petrol
|
117 |
+
119,Maruti Suzuki Ritz,Maruti,2013,399999,33000,Diesel
|
118 |
+
120,Maruti Suzuki Swift,Maruti,2013,372000,13349,Petrol
|
119 |
+
121,Maruti Suzuki Dzire,Maruti,2015,450000,104000,Diesel
|
120 |
+
122,Toyota Etios Liva,Toyota,2014,270000,55000,Petrol
|
121 |
+
123,Hyundai i20 Sportz,Hyundai,2011,350000,33333,Diesel
|
122 |
+
124,Chevrolet Spark,Chevrolet,2012,158400,33600,Petrol
|
123 |
+
125,Maruti Suzuki Alto,Maruti,2017,350000,5600,Petrol
|
124 |
+
126,Nissan Micra XV,Nissan,2011,179000,41000,Petrol
|
125 |
+
127,Maruti Suzuki Swift,Maruti,2007,125000,70000,Petrol
|
126 |
+
128,Maruti Suzuki Alto,Maruti,2018,200000,7500,Petrol
|
127 |
+
129,Honda Amaze 1.5,Honda,2013,299000,45000,Diesel
|
128 |
+
130,Maruti Suzuki Alto,Maruti,2015,220000,38000,Petrol
|
129 |
+
131,Chevrolet Beat,Chevrolet,2015,150000,30000,Petrol
|
130 |
+
133,Honda City 1.5,Honda,2010,285000,35000,Petrol
|
131 |
+
134,Ford EcoSport Trend,Ford,2016,830000,24330,Diesel
|
132 |
+
135,Hyundai i20 Asta,Hyundai,2009,210000,65480,Petrol
|
133 |
+
136,Maruti Suzuki Swift,Maruti,2013,340000,41000,Petrol
|
134 |
+
137,Tata Indica V2,Tata,2006,90000,20000,Petrol
|
135 |
+
139,Hindustan Motors Ambassador,Hindustan,2000,70000,200000,Diesel
|
136 |
+
140,Toyota Corolla Altis,Toyota,2010,289999,70000,Petrol
|
137 |
+
141,Toyota Corolla Altis,Toyota,2012,349999,59000,Petrol
|
138 |
+
142,Toyota Innova 2.5,Toyota,2012,849999,99000,Diesel
|
139 |
+
143,Volkswagen Jetta Highline,Volkswagen,2014,749999,46000,Diesel
|
140 |
+
144,Volkswagen Polo Comfortline,Volkswagen,2015,399999,2800,Petrol
|
141 |
+
145,Volkswagen Polo,Volkswagen,2014,274999,32000,Petrol
|
142 |
+
146,Mahindra Scorpio,Mahindra,2015,984999,22000,Diesel
|
143 |
+
147,Renault Duster,Renault,2014,449999,50000,Diesel
|
144 |
+
148,Honda Amaze,Honda,2015,344999,22000,Petrol
|
145 |
+
149,Nissan Sunny,Nissan,2012,224999,45000,Petrol
|
146 |
+
150,Hyundai Elite i20,Hyundai,2018,599999,21000,Petrol
|
147 |
+
151,Renault Kwid,Renault,2016,244999,11000,Petrol
|
148 |
+
152,Renault Duster,Renault,2013,399999,41000,Diesel
|
149 |
+
153,Ford EcoSport,Ford,2017,489999,39000,Petrol
|
150 |
+
154,Renault Duster,Renault,2014,474999,50000,Diesel
|
151 |
+
155,Mahindra Scorpio VLX,Mahindra,2011,499999,66000,Diesel
|
152 |
+
156,Maruti Suzuki Alto,Maruti,2018,310000,3000,Petrol
|
153 |
+
157,Chevrolet Spark LT,Chevrolet,2010,85000,45000,Petrol
|
154 |
+
158,Datsun Redi GO,Datsun,2016,245000,7000,Petrol
|
155 |
+
159,Maruti Suzuki Swift,Maruti,2010,189500,38500,Diesel
|
156 |
+
160,Fiat Punto Emotion,Fiat,2012,169500,37200,Diesel
|
157 |
+
161,Maruti Suzuki Swift,Maruti,2010,159500,43200,Diesel
|
158 |
+
162,Toyota Etios GD,Toyota,2013,275000,24800,Petrol
|
159 |
+
163,Hyundai i20 Sportz,Hyundai,2014,370000,60000,Diesel
|
160 |
+
164,Hyundai i10 Sportz,Hyundai,2010,168000,45872,Petrol
|
161 |
+
165,Chevrolet Beat LT,Chevrolet,2011,150000,40000,Diesel
|
162 |
+
166,Chevrolet Beat LS,Chevrolet,2011,145000,45000,Diesel
|
163 |
+
167,Chevrolet Beat LT,Chevrolet,2012,98500,38000,Diesel
|
164 |
+
168,Mahindra Scorpio VLX,Mahindra,2014,699000,50000,Diesel
|
165 |
+
169,Tata Indigo CS,Tata,2011,85000,11400,Diesel
|
166 |
+
170,Toyota Corolla Altis,Toyota,2015,575000,42000,Petrol
|
167 |
+
171,Honda City 1.5,Honda,2014,549000,39000,Petrol
|
168 |
+
172,Maruti Suzuki Swift,Maruti,2011,209000,47000,Diesel
|
169 |
+
173,Hyundai Eon Era,Hyundai,2013,185000,27000,Petrol
|
170 |
+
174,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
|
171 |
+
175,Mahindra XUV500,Mahindra,2014,699999,52000,Diesel
|
172 |
+
176,Honda Brio,Honda,2012,224999,30000,Petrol
|
173 |
+
177,Ford Fiesta,Ford,2011,274999,55000,Diesel
|
174 |
+
178,Honda Amaze,Honda,2013,284999,46000,Diesel
|
175 |
+
179,Honda City,Honda,2015,599999,30000,Diesel
|
176 |
+
180,Maruti Suzuki Wagon,Maruti,2012,199999,44000,Petrol
|
177 |
+
181,Honda City,Honda,2014,544999,45000,Diesel
|
178 |
+
182,Hyundai i20,Hyundai,2009,199000,31000,Petrol
|
179 |
+
183,Tata Indigo eCS,Tata,2016,320000,175430,Diesel
|
180 |
+
184,Hyundai Fluidic Verna,Hyundai,2015,540000,38000,Diesel
|
181 |
+
186,Mahindra Quanto C8,Mahindra,2013,340000,37000,Diesel
|
182 |
+
187,Fiat Petra ELX,Fiat,2008,75000,65000,Petrol
|
183 |
+
188,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel
|
184 |
+
189,Mini Cooper S,Mini,2013,1891111,13000,Petrol
|
185 |
+
190,Hyundai Santro Xing,Hyundai,2005,49000,7500,Petrol
|
186 |
+
191,Maruti Suzuki Ciaz,Maruti,2016,700000,3350,Petrol
|
187 |
+
192,Maruti Suzuki Zen,Maruti,2000,55000,60000,Petrol
|
188 |
+
193,Honda City,Honda,2015,448999,54000,Petrol
|
189 |
+
194,Hyundai Creta 1.6,Hyundai,2017,895000,32000,Petrol
|
190 |
+
196,Mahindra Scorpio SLX,Mahindra,2007,355000,75000,Diesel
|
191 |
+
197,Mahindra Scorpio SLE,Mahindra,2012,565000,62000,Diesel
|
192 |
+
198,Toyota Innova 2.5,Toyota,2006,365000,73000,Diesel
|
193 |
+
199,Maruti Suzuki Alto,Maruti,2011,145000,41000,Petrol
|
194 |
+
200,Maruti Suzuki Wagon,Maruti,2011,210000,35000,Petrol
|
195 |
+
201,Tata Nano Cx,Tata,2013,40000,2200,Petrol
|
196 |
+
202,Maruti Suzuki Alto,Maruti,2013,125000,39000,Petrol
|
197 |
+
203,Maruti Suzuki Wagon,Maruti,2009,135000,45000,Petrol
|
198 |
+
204,Maruti Suzuki Swift,Maruti,2006,135000,45000,Petrol
|
199 |
+
205,Tata Sumo Victa,Tata,2012,285000,65000,Diesel
|
200 |
+
207,Maruti Suzuki Wagon,Maruti,2010,145000,54870,Petrol
|
201 |
+
208,Maruti Suzuki Alto,Maruti,2010,135000,34580,Petrol
|
202 |
+
209,Volkswagen Passat Diesel,Volkswagen,2009,450000,97000,Diesel
|
203 |
+
210,Renault Scala RxL,Renault,2015,375000,25000,Diesel
|
204 |
+
211,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel
|
205 |
+
212,Hyundai Grand i10,Hyundai,2014,365000,20000,Petrol
|
206 |
+
213,Hyundai i20 Active,Hyundai,2015,500000,18000,Petrol
|
207 |
+
214,Mahindra Xylo E4,Mahindra,2012,400000,35000,Diesel
|
208 |
+
215,Mahindra Jeep MM,Mahindra,2019,390000,60,Diesel
|
209 |
+
216,Renault Duster 110PS,Renault,2012,501000,35000,Diesel
|
210 |
+
217,Mahindra Bolero SLE,Mahindra,2013,330000,80200,Diesel
|
211 |
+
218,Force Motors Force,Force,2015,580000,3200,Diesel
|
212 |
+
219,Maruti Suzuki SX4,Maruti,2012,265000,46000,Diesel
|
213 |
+
220,Mahindra Jeep CL550,Mahindra,2019,379000,0,Diesel
|
214 |
+
221,Maruti Suzuki Alto,Maruti,2015,219000,5000,Petrol
|
215 |
+
222,Mahindra Jeep CL550,Mahindra,2018,385000,588,Diesel
|
216 |
+
223,Toyota Etios,Toyota,2011,275000,36000,Diesel
|
217 |
+
224,Volkswagen Polo,Volkswagen,2015,330000,38000,Diesel
|
218 |
+
225,Honda City ZX,Honda,2008,110000,45000,Petrol
|
219 |
+
226,Maruti Suzuki Wagon,Maruti,2006,80000,71200,Petrol
|
220 |
+
227,Honda City VX,Honda,2016,519000,52000,Diesel
|
221 |
+
228,Mahindra Thar CRDe,Mahindra,2016,730000,29000,Diesel
|
222 |
+
229,Mitsubishi Pajero Sport,Mitsubishi,2015,1475000,47000,Diesel
|
223 |
+
230,Audi A4 1.8,Audi,2009,699000,47000,Petrol
|
224 |
+
231,Mercedes Benz GLA,Mercedes,2015,2000000,20000,Diesel
|
225 |
+
232,Land Rover Freelander,Land,2015,2100000,30000,Diesel
|
226 |
+
233,Renault Kwid RXT,Renault,2017,340000,5000,Petrol
|
227 |
+
234,Tata Aria Pleasure,Tata,2014,390000,35000,Diesel
|
228 |
+
235,Mercedes Benz B,Mercedes,2014,1400000,31000,Petrol
|
229 |
+
236,Datsun GO T,Datsun,2016,245000,7000,Petrol
|
230 |
+
237,Tata Indigo eCS,Tata,2016,320000,175430,Diesel
|
231 |
+
238,Tata Indigo eCS,Tata,2016,320000,175400,Diesel
|
232 |
+
239,Honda Jazz VX,Honda,2016,450000,41000,Petrol
|
233 |
+
240,Honda Amaze 1.2,Honda,2014,311000,33000,Petrol
|
234 |
+
241,Honda Amaze,Honda,2013,284999,46000,Diesel
|
235 |
+
242,Honda City,Honda,2012,399999,45000,Petrol
|
236 |
+
243,Honda City,Honda,2015,599999,39000,Diesel
|
237 |
+
244,Honda Amaze,Honda,2015,344999,22000,Petrol
|
238 |
+
245,Audi A4 1.8,Audi,2009,699000,47000,Petrol
|
239 |
+
246,Force Motors Force,Force,2015,580000,3200,Diesel
|
240 |
+
247,Mahindra Scorpio S4,Mahindra,2015,855000,30000,Diesel
|
241 |
+
248,Hyundai i20 Active,Hyundai,2015,535000,37000,Diesel
|
242 |
+
249,Mini Cooper S,Mini,2013,1891111,13000,Petrol
|
243 |
+
250,Maruti Suzuki Ciaz,Maruti,2017,699000,14000,Petrol
|
244 |
+
251,Chevrolet Tavera Neo,Chevrolet,2013,375000,55000,Diesel
|
245 |
+
252,Honda Amaze,Honda,2013,284999,46000,Diesel
|
246 |
+
253,Hyundai Eon Sportz,Hyundai,2012,178000,30000,Petrol
|
247 |
+
254,Tata Sumo Gold,Tata,2013,300000,50000,Diesel
|
248 |
+
255,Maruti Suzuki Wagon,Maruti,2003,90000,45000,Petrol
|
249 |
+
256,Maruti Suzuki Esteem,Maruti,2006,95000,45000,Petrol
|
250 |
+
257,Maruti Suzuki Eeco,Maruti,2015,255000,9300,Petrol
|
251 |
+
258,Chevrolet Enjoy 1.4,Chevrolet,2013,245000,55000,Diesel
|
252 |
+
259,Hyundai i20 Asta,Hyundai,2012,329500,36200,Diesel
|
253 |
+
260,Ford Figo Diesel,Ford,2014,195000,50000,Diesel
|
254 |
+
261,Maruti Suzuki Eeco,Maruti,2015,251111,55000,Petrol
|
255 |
+
262,Maruti Suzuki Ertiga,Maruti,2014,569999,45000,Petrol
|
256 |
+
263,Maruti Suzuki Esteem,Maruti,2007,69999,51000,Petrol
|
257 |
+
264,Maruti Suzuki Ritz,Maruti,2014,299999,19000,Petrol
|
258 |
+
265,Maruti Suzuki Dzire,Maruti,2009,220000,46000,Petrol
|
259 |
+
266,Maruti Suzuki Ritz,Maruti,2013,399999,33000,Diesel
|
260 |
+
267,Maruti Suzuki SX4,Maruti,2010,249999,36000,Petrol
|
261 |
+
268,Maruti Suzuki Wagon,Maruti,2015,289999,22000,Petrol
|
262 |
+
269,Mini Cooper S,Mini,2013,1891111,13500,Petrol
|
263 |
+
270,Nissan Terrano XL,Nissan,2015,499999,60000,Diesel
|
264 |
+
271,Renault Duster 85,Renault,2013,489999,27000,Diesel
|
265 |
+
272,Renault Duster 85,Renault,2014,489999,59000,Diesel
|
266 |
+
273,Renault Duster 85,Renault,2015,549999,19000,Diesel
|
267 |
+
274,Maruti Suzuki Dzire,Maruti,2013,380000,30000,Petrol
|
268 |
+
275,Renault Kwid RXT,Renault,2018,325000,15000,Petrol
|
269 |
+
276,Maruti Suzuki Maruti,Maruti,2003,57000,56758,Petrol
|
270 |
+
277,Renault Kwid 1.0,Renault,2018,349999,10000,Petrol
|
271 |
+
278,Renault Lodgy 85,Renault,2018,689999,20000,Diesel
|
272 |
+
279,Renault Scala RxL,Renault,2014,349999,49000,Diesel
|
273 |
+
280,Hyundai Grand i10,Hyundai,2014,410000,41000,Petrol
|
274 |
+
281,Maruti Suzuki Swift,Maruti,2011,225000,45000,Petrol
|
275 |
+
282,Chevrolet Beat LS,Chevrolet,2010,120000,43000,Petrol
|
276 |
+
283,Tata Indigo eCS,Tata,2016,320000,175430,Diesel
|
277 |
+
284,Hyundai Santro Xing,Hyundai,2000,59000,56450,Petrol
|
278 |
+
285,Hyundai Fluidic Verna,Hyundai,2015,540000,38000,Diesel
|
279 |
+
287,Chevrolet Beat LS,Chevrolet,2010,80000,56000,Petrol
|
280 |
+
288,Mahindra Quanto C8,Mahindra,2013,340000,37000,Diesel
|
281 |
+
289,Fiat Petra ELX,Fiat,2008,75000,65000,Petrol
|
282 |
+
290,Chevrolet Beat LS,Chevrolet,2015,220000,32700,Petrol
|
283 |
+
291,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel
|
284 |
+
292,Ford EcoSport Titanium,Ford,2016,599000,30000,Diesel
|
285 |
+
293,Hyundai Accent GLX,Hyundai,2006,80000,56000,Petrol
|
286 |
+
296,Mahindra TUV300 T4,Mahindra,2016,675000,9000,Diesel
|
287 |
+
297,Mini Cooper S,Mini,2013,1891111,13000,Petrol
|
288 |
+
298,Mini Cooper S,Mini,2013,1891111,13000,Petrol
|
289 |
+
299,Tata Indica V2,Tata,2008,150000,11000,Petrol
|
290 |
+
300,Mini Cooper S,Mini,2013,1891111,13000,Petrol
|
291 |
+
301,Tata Indigo CS,Tata,2009,72500,46000,Diesel
|
292 |
+
302,Maruti Suzuki Swift,Maruti,2019,610000,73,Petrol
|
293 |
+
303,Mahindra Scorpio VLX,Mahindra,2004,230000,160000,Diesel
|
294 |
+
305,Honda Accord,Honda,2009,175000,58559,Petrol
|
295 |
+
306,Mahindra Scorpio S4,Mahindra,2015,855000,30000,Diesel
|
296 |
+
307,Chevrolet Tavera Neo,Chevrolet,2013,375000,55000,Diesel
|
297 |
+
308,Ford EcoSport Titanium,Ford,2014,520000,57000,Diesel
|
298 |
+
309,Maruti Suzuki Ertiga,Maruti,2015,524999,50000,Diesel
|
299 |
+
310,Honda Amaze,Honda,2014,299999,37000,Petrol
|
300 |
+
311,Maruti Suzuki Dzire,Maruti,2012,299999,40000,Petrol
|
301 |
+
312,Honda City,Honda,2011,284999,55000,Petrol
|
302 |
+
313,Mahindra Scorpio 2.6,Mahindra,2007,220000,170000,Diesel
|
303 |
+
314,Maruti Suzuki Dzire,Maruti,2014,424999,55000,Diesel
|
304 |
+
315,Honda City,Honda,2015,644999,39000,Petrol
|
305 |
+
316,Honda Mobilio,Honda,2014,399999,44000,Petrol
|
306 |
+
317,Toyota Corolla Altis,Toyota,2009,199999,65000,Petrol
|
307 |
+
318,Honda City,Honda,2014,584999,39000,Petrol
|
308 |
+
319,Skoda Laura,Skoda,2012,349999,44000,Diesel
|
309 |
+
320,Renault Duster,Renault,2015,449999,49000,Diesel
|
310 |
+
321,Maruti Suzuki Ertiga,Maruti,2018,799999,9000,Diesel
|
311 |
+
322,Maruti Suzuki Dzire,Maruti,2015,444999,45000,Diesel
|
312 |
+
323,Mahindra XUV500,Mahindra,2014,649999,47000,Diesel
|
313 |
+
324,Hyundai Verna Fluidic,Hyundai,2012,444999,40000,Diesel
|
314 |
+
325,Maruti Suzuki Vitara,Maruti,2016,689999,29000,Diesel
|
315 |
+
326,Maruti Suzuki Wagon,Maruti,2016,344999,15000,Petrol
|
316 |
+
327,Mahindra Scorpio,Mahindra,2015,944999,45000,Diesel
|
317 |
+
328,Honda Amaze,Honda,2014,274999,35000,Petrol
|
318 |
+
329,Mahindra XUV500,Mahindra,2013,689999,80000,Diesel
|
319 |
+
330,Mahindra Scorpio,Mahindra,2013,574999,68000,Diesel
|
320 |
+
331,Skoda Laura,Skoda,2013,374999,50000,Diesel
|
321 |
+
332,Volkswagen Polo,Volkswagen,2010,199999,60000,Diesel
|
322 |
+
333,Hyundai Elite i20,Hyundai,2016,549999,9000,Petrol
|
323 |
+
334,Tata Manza Aura,Tata,2012,130000,72000,Diesel
|
324 |
+
335,Chevrolet Sail UVA,Chevrolet,2013,210000,60000,Petrol
|
325 |
+
336,Renault Duster 110,Renault,2012,501000,38000,Diesel
|
326 |
+
337,Hyundai Verna Fluidic,Hyundai,2013,401000,45000,Diesel
|
327 |
+
338,Audi A4 2.0,Audi,2012,1350000,40000,Diesel
|
328 |
+
339,Hyundai Elantra SX,Hyundai,2013,600000,20000,Petrol
|
329 |
+
340,Mahindra Scorpio VLX,Mahindra,2013,610000,35000,Diesel
|
330 |
+
341,Mahindra KUV100 K8,Mahindra,2016,400000,20000,Diesel
|
331 |
+
342,Renault Scala RxL,Renault,2015,375000,25000,Diesel
|
332 |
+
343,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel
|
333 |
+
344,Hyundai Grand i10,Hyundai,2014,365000,20000,Petrol
|
334 |
+
345,Hyundai i20 Active,Hyundai,2015,500000,18000,Petrol
|
335 |
+
346,Mahindra Xylo E4,Mahindra,2012,400000,35000,Diesel
|
336 |
+
347,Hyundai Grand i10,Hyundai,2017,524999,6821,Petrol
|
337 |
+
348,Hyundai i20,Hyundai,2014,449999,23000,Petrol
|
338 |
+
349,Hyundai Eon,Hyundai,2014,174999,14000,Petrol
|
339 |
+
350,Hyundai i10,Hyundai,2012,244999,38000,Petrol
|
340 |
+
351,Hyundai i20 Active,Hyundai,2015,574999,35000,Diesel
|
341 |
+
352,Datsun Redi GO,Datsun,2017,244999,22000,Petrol
|
342 |
+
353,Toyota Etios Liva,Toyota,2011,239999,41000,Petrol
|
343 |
+
354,Hyundai Accent,Hyundai,2010,99999,45000,Petrol
|
344 |
+
355,Hyundai Verna,Hyundai,2014,489999,44000,Diesel
|
345 |
+
356,Maruti Suzuki Swift,Maruti,2013,324999,45000,Diesel
|
346 |
+
357,Toyota Fortuner,Toyota,2011,1074999,52000,Diesel
|
347 |
+
358,Hyundai i10 Sportz,Hyundai,2012,230000,34000,Petrol
|
348 |
+
359,Mahindra Bolero Power,Mahindra,2018,699000,1800,Diesel
|
349 |
+
361,Mahindra XUV500,Mahindra,2015,1000000,15000,Diesel
|
350 |
+
362,Honda City 1.5,Honda,2010,240000,400000,Petrol
|
351 |
+
363,Chevrolet Spark LT,Chevrolet,2009,110000,44000,Petrol
|
352 |
+
364,Mahindra Jeep MM,Mahindra,2019,390000,60,Diesel
|
353 |
+
365,Renault Duster 110PS,Renault,2012,501000,35000,Diesel
|
354 |
+
366,Mahindra XUV500,Mahindra,2016,1130000,72000,Diesel
|
355 |
+
367,Tata Indigo eCS,Tata,2014,250000,40000,Diesel
|
356 |
+
369,Mahindra Bolero SLE,Mahindra,2013,330000,80200,Diesel
|
357 |
+
370,Force Motors Force,Force,2015,580000,3200,Diesel
|
358 |
+
371,Skoda Rapid Elegance,Skoda,2013,340000,48000,Diesel
|
359 |
+
372,Tata Vista Quadrajet,Tata,2011,120000,90000,Diesel
|
360 |
+
373,Maruti Suzuki Alto,Maruti,2015,265000,12000,Petrol
|
361 |
+
374,Maruti Suzuki SX4,Maruti,2012,265000,46000,Diesel
|
362 |
+
375,Maruti Suzuki Zen,Maruti,2003,85000,69900,Petrol
|
363 |
+
376,Mahindra Jeep CL550,Mahindra,2019,379000,0,Diesel
|
364 |
+
377,Hyundai i10 Magna,Hyundai,2011,175000,45000,Petrol
|
365 |
+
378,Maruti Suzuki Alto,Maruti,2015,219000,5000,Petrol
|
366 |
+
379,Maruti Suzuki Swift,Maruti,2016,350000,166000,Diesel
|
367 |
+
380,Honda City ZX,Honda,2008,149000,42000,Petrol
|
368 |
+
381,Mahindra Jeep CL550,Mahindra,2018,385000,588,Diesel
|
369 |
+
382,Mahindra Jeep MM,Mahindra,2006,425000,122,Diesel
|
370 |
+
383,Chevrolet Beat Diesel,Chevrolet,2017,150000,62000,Diesel
|
371 |
+
384,Honda City 1.5,Honda,2010,225000,70000,Petrol
|
372 |
+
386,Hyundai Verna 1.4,Hyundai,2014,375000,36000,Petrol
|
373 |
+
387,Toyota Innova 2.5,Toyota,2012,770000,0,Diesel
|
374 |
+
389,Maruti Suzuki Maruti,Maruti,1995,30000,55000,Petrol
|
375 |
+
390,Toyota Etios,Toyota,2011,275000,36000,Diesel
|
376 |
+
391,Volkswagen Polo,Volkswagen,2015,330000,38000,Diesel
|
377 |
+
392,Maruti Suzuki Swift,Maruti,2014,335000,55000,Diesel
|
378 |
+
393,Hyundai Elite i20,Hyundai,2015,450000,20000,Diesel
|
379 |
+
394,Maruti Suzuki Swift,Maruti,2012,225000,40000,Petrol
|
380 |
+
396,Maruti Suzuki Versa,Maruti,2004,80000,50000,Petrol
|
381 |
+
397,Tata Indigo LX,Tata,2016,130000,104000,Diesel
|
382 |
+
398,Volkswagen Vento Konekt,Volkswagen,2011,245000,65000,Diesel
|
383 |
+
399,Mercedes Benz C,Mercedes,2002,399000,41000,Petrol
|
384 |
+
400,Maruti Suzuki Ertiga,Maruti,2013,450000,90000,Diesel
|
385 |
+
402,Honda City,Honda,2000,65000,80000,Petrol
|
386 |
+
403,Hyundai Santro Xing,Hyundai,2006,75000,46000,Petrol
|
387 |
+
404,Maruti Suzuki Omni,Maruti,2001,70000,70000,Petrol
|
388 |
+
405,Hyundai Sonata Transform,Hyundai,2017,190000,36469,Diesel
|
389 |
+
406,Hyundai Elite i20,Hyundai,2018,600000,7800,Petrol
|
390 |
+
407,Volkswagen Vento Konekt,Volkswagen,2011,245000,65000,Diesel
|
391 |
+
408,Maruti Suzuki Alto,Maruti,2017,240000,60000,Petrol
|
392 |
+
409,Maruti Suzuki Alto,Maruti,2011,155000,32000,Petrol
|
393 |
+
410,Honda Jazz S,Honda,2009,169999,24695,Petrol
|
394 |
+
411,Hyundai Grand i10,Hyundai,2017,450000,15141,Petrol
|
395 |
+
412,Maruti Suzuki Zen,Maruti,2001,40000,40000,Petrol
|
396 |
+
413,Mahindra Scorpio W,Mahindra,2012,165000,65000,Diesel
|
397 |
+
415,Maruti Suzuki Alto,Maruti,2014,270000,22000,Petrol
|
398 |
+
416,Hyundai Grand i10,Hyundai,2016,280000,59910,Diesel
|
399 |
+
417,Mahindra XUV500 W8,Mahindra,2012,560000,100000,Diesel
|
400 |
+
418,Hyundai Creta 1.6,Hyundai,2016,950000,25000,Petrol
|
401 |
+
419,Hyundai i20 Magna,Hyundai,2013,310000,35000,Petrol
|
402 |
+
420,Renault Duster 85,Renault,2015,715000,65000,Diesel
|
403 |
+
421,Hyundai Grand i10,Hyundai,2014,340000,35000,Petrol
|
404 |
+
422,Honda Brio V,Honda,2012,235000,33000,Petrol
|
405 |
+
423,Mahindra TUV300 T4,Mahindra,2017,610000,68000,Diesel
|
406 |
+
424,Chevrolet Spark LS,Chevrolet,2010,95000,23000,Petrol
|
407 |
+
425,Mahindra TUV300 T8,Mahindra,2018,1000000,4500,Diesel
|
408 |
+
426,Maruti Suzuki Swift,Maruti,2015,220000,129000,Diesel
|
409 |
+
427,Nissan X Trail,Nissan,2019,1200000,300,Diesel
|
410 |
+
428,Maruti Suzuki Alto,Maruti,2015,230000,5000,Petrol
|
411 |
+
429,Ford Ikon 1.3,Ford,2001,45000,65000,Petrol
|
412 |
+
430,Toyota Fortuner 3.0,Toyota,2010,940000,131000,Diesel
|
413 |
+
431,Tata Manza ELAN,Tata,2010,155555,111111,Petrol
|
414 |
+
434,Mercedes Benz A,Mercedes,2013,1500000,14000,Petrol
|
415 |
+
435,Chevrolet Beat LS,Chevrolet,2016,210000,22000,Diesel
|
416 |
+
436,Ford EcoSport Trend,Ford,2013,495000,38000,Diesel
|
417 |
+
437,Tata Indigo LS,Tata,2016,125000,70000,Diesel
|
418 |
+
438,Hyundai i20 Magna,Hyundai,2010,195000,36000,Petrol
|
419 |
+
439,Volkswagen Vento Highline,Volkswagen,2015,550000,34000,Diesel
|
420 |
+
440,Renault Kwid RXT,Renault,2015,270000,43000,Petrol
|
421 |
+
442,Ford EcoSport Titanium,Ford,2014,500000,40000,Diesel
|
422 |
+
443,Honda Amaze 1.5,Honda,2016,240000,160000,Diesel
|
423 |
+
444,Hyundai Verna 1.6,Hyundai,2017,800000,12000,Petrol
|
424 |
+
445,BMW 5 Series,BMW,2011,1299000,49000,Diesel
|
425 |
+
446,Skoda Superb 1.8,Skoda,2011,530000,68000,Petrol
|
426 |
+
447,Audi Q3 2.0,Audi,2013,1499000,37000,Diesel
|
427 |
+
448,Mahindra Bolero DI,Mahindra,2012,220000,59466,Diesel
|
428 |
+
450,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
|
429 |
+
451,Ford Figo Duratorq,Ford,2012,250000,99000,Diesel
|
430 |
+
452,Maruti Suzuki Wagon,Maruti,2018,395000,25500,Petrol
|
431 |
+
453,Mahindra Logan Diesel,Mahindra,2009,130000,66000,Petrol
|
432 |
+
454,Tata Nano GenX,Tata,2010,32000,44005,Petrol
|
433 |
+
455,Mahindra TUV300 T4,Mahindra,2016,540000,35000,Diesel
|
434 |
+
456,Mahindra TUV300 T4,Mahindra,2016,540000,35000,Diesel
|
435 |
+
457,Hyundai Elite i20,Hyundai,2015,405000,28000,Petrol
|
436 |
+
458,Hyundai Elite i20,Hyundai,2015,400000,30000,Petrol
|
437 |
+
459,Honda City SV,Honda,2017,760000,4000,Petrol
|
438 |
+
460,Maruti Suzuki Baleno,Maruti,2016,500000,28000,Petrol
|
439 |
+
461,Ford Figo Petrol,Ford,2011,175000,75000,Petrol
|
440 |
+
462,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
|
441 |
+
463,Honda City,Honda,2017,750000,3000,Petrol
|
442 |
+
464,Hyundai Elite i20,Hyundai,2015,419000,20000,Petrol
|
443 |
+
465,Maruti Suzuki Versa,Maruti,2004,90000,50000,Petrol
|
444 |
+
466,Hyundai Eon Era,Hyundai,2018,140000,2110,Petrol
|
445 |
+
467,Mitsubishi Pajero Sport,Mitsubishi,2015,1540000,43222,Petrol
|
446 |
+
468,Hyundai i10 Magna,Hyundai,2008,275000,100200,Petrol
|
447 |
+
469,Toyota Corolla H2,Toyota,2003,150000,100000,Petrol
|
448 |
+
470,Maruti Suzuki Swift,Maruti,2011,230000,65,Petrol
|
449 |
+
471,Tata Indigo CS,Tata,2015,123000,100000,Diesel
|
450 |
+
472,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
|
451 |
+
473,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel
|
452 |
+
474,Hyundai Xcent Base,Hyundai,2016,300000,140000,Diesel
|
453 |
+
475,Honda City,Honda,2015,499999,55000,Petrol
|
454 |
+
476,Hyundai Accent Executive,Hyundai,2009,165000,48000,Petrol
|
455 |
+
477,Maruti Suzuki Baleno,Maruti,2016,498000,22000,Petrol
|
456 |
+
478,Tata Zest XE,Tata,2018,480000,103553,Diesel
|
457 |
+
479,Maruti Suzuki Dzire,Maruti,2017,488000,80000,Diesel
|
458 |
+
480,Tata Sumo Gold,Tata,2014,250000,99000,Diesel
|
459 |
+
481,Toyota Corolla Altis,Toyota,2010,220000,58000,Petrol
|
460 |
+
482,Maruti Suzuki Eeco,Maruti,2013,290000,70000,LPG
|
461 |
+
483,Toyota Fortuner 3.0,Toyota,2015,1525000,120000,Diesel
|
462 |
+
484,Mahindra XUV500 W6,Mahindra,2013,548900,49800,Diesel
|
463 |
+
485,Tata Tigor Revotron,Tata,2019,650000,100,Diesel
|
464 |
+
486,Maruti Suzuki 800,Maruti,2001,55000,81876,Petrol
|
465 |
+
487,Maruti Suzuki Ertiga,Maruti,2015,550000,75000,Petrol
|
466 |
+
488,Maruti Suzuki Versa,Maruti,2004,90000,50000,Petrol
|
467 |
+
489,Honda Mobilio S,Honda,2014,399000,44000,Diesel
|
468 |
+
490,Maruti Suzuki Ertiga,Maruti,2016,730000,55000,Diesel
|
469 |
+
491,Maruti Suzuki Vitara,Maruti,2017,725000,36000,Diesel
|
470 |
+
492,Hyundai Verna 1.6,Hyundai,2016,195000,56000,Diesel
|
471 |
+
493,Maruti Suzuki Swift,Maruti,2007,130000,62000,Petrol
|
472 |
+
494,Toyota Fortuner 3.0,Toyota,2015,1525000,120000,Diesel
|
473 |
+
495,Maruti Suzuki Omni,Maruti,2014,190000,6020,Petrol
|
474 |
+
496,Honda Amaze,Honda,2013,250000,55700,Diesel
|
475 |
+
497,Tata Indica,Tata,2005,80000,42000,Petrol
|
476 |
+
498,Hyundai Santro Xing,Hyundai,2003,120000,50000,Petrol
|
477 |
+
499,Maruti Suzuki Zen,Maruti,2010,149000,35000,Petrol
|
478 |
+
500,Maruti Suzuki Wagon,Maruti,2014,250000,18500,Petrol
|
479 |
+
501,Maruti Suzuki Wagon,Maruti,2007,120000,7000,Petrol
|
480 |
+
502,Honda Brio VX,Honda,2017,450000,11000,Petrol
|
481 |
+
504,Maruti Suzuki Zen,Maruti,2003,99999,53000,Petrol
|
482 |
+
505,Maruti Suzuki Zen,Maruti,2008,135000,23000,Petrol
|
483 |
+
506,Maruti Suzuki Wagon,Maruti,2016,225000,35500,Diesel
|
484 |
+
507,Maruti Suzuki Alto,Maruti,2010,99000,22134,Petrol
|
485 |
+
508,Renault Kwid RXT,Renault,2019,370000,1000,Petrol
|
486 |
+
509,Tata Nano Lx,Tata,2010,52000,9000,Petrol
|
487 |
+
510,Jaguar XE XE,Jaguar,2016,2800000,8500,Petrol
|
488 |
+
512,Hyundai Eon Magna,Hyundai,2014,190000,35000,Petrol
|
489 |
+
513,Honda City 1.5,Honda,2014,499000,22000,Petrol
|
490 |
+
514,Hindustan Motors Ambassador,Hindustan,2002,90000,25000,Diesel
|
491 |
+
515,Maruti Suzuki Ritz,Maruti,2010,149000,40000,Petrol
|
492 |
+
516,Hyundai Grand i10,Hyundai,2017,400000,20000,Petrol
|
493 |
+
517,Hyundai Eon D,Hyundai,2016,120000,87000,Petrol
|
494 |
+
518,Maruti Suzuki Swift,Maruti,2015,250000,55000,Petrol
|
495 |
+
519,Maruti Suzuki Wagon,Maruti,2017,375000,23000,Petrol
|
496 |
+
520,Honda Amaze 1.2,Honda,2014,381000,6000,Petrol
|
497 |
+
521,Maruti Suzuki Estilo,Maruti,2013,180000,65000,Petrol
|
498 |
+
522,Maruti Suzuki Vitara,Maruti,2016,580000,25000,Diesel
|
499 |
+
523,Maruti Suzuki Eeco,Maruti,2015,278000,39000,Petrol
|
500 |
+
525,Hyundai Creta 1.6,Hyundai,2016,1000000,8000,Petrol
|
501 |
+
526,Mahindra Scorpio Vlx,Mahindra,2013,690000,75000,Diesel
|
502 |
+
527,Maruti Suzuki Ertiga,Maruti,2012,480000,51000,Diesel
|
503 |
+
528,Mitsubishi Lancer 1.8,Mitsubishi,2006,85000,50000,Petrol
|
504 |
+
529,Maruti Suzuki Maruti,Maruti,2001,40000,75000,Petrol
|
505 |
+
530,Maruti Suzuki Alto,Maruti,2015,90000,55800,Petrol
|
506 |
+
531,Hyundai Grand i10,Hyundai,2015,340000,53000,Petrol
|
507 |
+
532,Hyundai Eon D,Hyundai,2018,260000,25000,Petrol
|
508 |
+
533,Ford Fiesta SXi,Ford,2009,250000,56400,Petrol
|
509 |
+
534,Maruti Suzuki Ritz,Maruti,2010,180000,72160,Diesel
|
510 |
+
535,Hyundai Verna Fluidic,Hyundai,2012,350000,10000,Diesel
|
511 |
+
536,Maruti Suzuki Wagon,Maruti,2006,90001,48000,Petrol
|
512 |
+
537,Maruti Suzuki Estilo,Maruti,2007,115000,36000,Petrol
|
513 |
+
538,Audi A6 2.0,Audi,2012,1599000,11500,Diesel
|
514 |
+
539,Maruti Suzuki Wagon,Maruti,2003,130000,133000,Petrol
|
515 |
+
540,Maruti Suzuki Wagon,Maruti,2009,159000,27000,Petrol
|
516 |
+
541,Maruti Suzuki Wagon,Maruti,2009,160000,35000,Petrol
|
517 |
+
542,Maruti Suzuki Alto,Maruti,2010,110000,55000,Petrol
|
518 |
+
543,Maruti Suzuki Baleno,Maruti,2016,425000,40000,Petrol
|
519 |
+
544,Hyundai Verna 1.6,Hyundai,2019,900000,2000,Petrol
|
520 |
+
545,Maruti Suzuki Swift,Maruti,2009,150000,45000,Petrol
|
521 |
+
546,Hyundai Getz Prime,Hyundai,2009,110000,20000,Petrol
|
522 |
+
547,Hyundai Santro,Hyundai,2000,51999,88000,Petrol
|
523 |
+
548,Hyundai Getz Prime,Hyundai,2009,115000,20000,Petrol
|
524 |
+
549,Chevrolet Beat PS,Chevrolet,2012,215000,65422,Diesel
|
525 |
+
550,Ford EcoSport Trend,Ford,2017,580000,10000,Petrol
|
526 |
+
551,Maruti Suzuki Dzire,Maruti,2013,380000,35000,Petrol
|
527 |
+
552,Hyundai Fluidic Verna,Hyundai,2013,350000,117000,Diesel
|
528 |
+
553,Tata Indica V2,Tata,2005,35000,150000,Diesel
|
529 |
+
554,BMW X1 xDrive20d,BMW,2011,1150000,72000,Diesel
|
530 |
+
555,Hyundai i20 Asta,Hyundai,2010,300000,10750,Petrol
|
531 |
+
556,Honda City 1.5,Honda,2009,269000,55000,Petrol
|
532 |
+
557,Tata Nano,Tata,2013,60000,6800,Petrol
|
533 |
+
558,Chevrolet Cruze LTZ,Chevrolet,2014,400000,41000,Diesel
|
534 |
+
559,Hyundai Verna Fluidic,Hyundai,2015,430000,73000,Diesel
|
535 |
+
561,Maruti Suzuki Swift,Maruti,2011,140000,65000,Diesel
|
536 |
+
563,Mahindra XUV500 W10,Mahindra,2018,1299000,40000,Diesel
|
537 |
+
564,Maruti Suzuki Alto,Maruti,2014,199000,37000,Petrol
|
538 |
+
565,Hyundai Accent GLE,Hyundai,2006,90000,55000,Petrol
|
539 |
+
566,Force Motors One,Force,2013,550000,140000,Diesel
|
540 |
+
568,Maruti Suzuki Alto,Maruti,2019,265000,9800,Petrol
|
541 |
+
569,Chevrolet Spark 1.0,Chevrolet,2011,100000,27000,Petrol
|
542 |
+
570,Hyundai i10,Hyundai,2009,215000,27000,Petrol
|
543 |
+
571,Toyota Etios Liva,Toyota,2012,380000,20000,Diesel
|
544 |
+
572,Renault Duster 85PS,Renault,2013,401919,57923,Diesel
|
545 |
+
573,Chevrolet Enjoy,Chevrolet,2014,490000,30201,Diesel
|
546 |
+
574,Maruti Suzuki Alto,Maruti,2017,280000,6200,Petrol
|
547 |
+
575,BMW 5 Series,BMW,2009,650000,37518,Petrol
|
548 |
+
576,Toyota Etios Liva,Toyota,2014,160000,24652,Petrol
|
549 |
+
577,Mahindra Jeep MM,Mahindra,2004,424000,383,Diesel
|
550 |
+
578,Chevrolet Beat LS,Chevrolet,2016,225000,95000,Diesel
|
551 |
+
579,Chevrolet Cruze LTZ,Chevrolet,2011,350000,35000,Diesel
|
552 |
+
580,Jeep Wrangler Unlimited,Jeep,2015,950000,3528,Diesel
|
553 |
+
581,Maruti Suzuki Ertiga,Maruti,2013,485000,52500,Diesel
|
554 |
+
582,Hyundai Verna VGT,Hyundai,2010,205000,47900,Diesel
|
555 |
+
583,Maruti Suzuki Omni,Maruti,2012,160000,14000,Petrol
|
556 |
+
584,Maruti Suzuki Celerio,Maruti,2018,310000,37000,Petrol
|
557 |
+
585,Tata Zest Quadrajet,Tata,2017,180000,90000,Diesel
|
558 |
+
586,Mahindra XUV500 W6,Mahindra,2013,549900,52800,Diesel
|
559 |
+
587,Tata Indigo CS,Tata,2016,150000,104000,Diesel
|
560 |
+
588,Hyundai i10 Era,Hyundai,2011,175000,30000,Petrol
|
561 |
+
589,Tata Indigo eCS,Tata,2014,95000,195000,Diesel
|
562 |
+
590,Tata Indigo LX,Tata,2016,230000,104000,Diesel
|
563 |
+
591,Tata Indigo eCS,Tata,2016,230000,104000,Diesel
|
564 |
+
592,Tata Indigo Marina,Tata,2004,180000,70000,Diesel
|
565 |
+
594,Hyundai Xcent SX,Hyundai,2015,400000,43000,Diesel
|
566 |
+
595,Hyundai Eon Magna,Hyundai,2013,185000,23000,Petrol
|
567 |
+
596,Renault Duster 85,Renault,2015,385000,51000,Diesel
|
568 |
+
597,Maruti Suzuki Alto,Maruti,2009,90000,62000,Petrol
|
569 |
+
598,Tata Nano LX,Tata,2010,32000,48008,Petrol
|
570 |
+
600,Renault Duster 110,Renault,2013,435000,39000,Diesel
|
571 |
+
601,Maruti Suzuki Wagon,Maruti,2010,225000,40000,Petrol
|
572 |
+
602,Maruti Suzuki Swift,Maruti,2006,189700,48247,Petrol
|
573 |
+
603,Maruti Suzuki Ertiga,Maruti,2012,389700,39000,Diesel
|
574 |
+
604,Maruti Suzuki Swift,Maruti,2014,365000,23000,Petrol
|
575 |
+
605,Maruti Suzuki Alto,Maruti,2017,360000,9400,Petrol
|
576 |
+
606,Hyundai i20 Magna,Hyundai,2010,210000,50000,Petrol
|
577 |
+
607,Hyundai i10 Magna,Hyundai,2009,170000,75000,Petrol
|
578 |
+
609,Tata Zest XE,Tata,2017,380000,70000,Diesel
|
579 |
+
610,Mahindra Xylo E8,Mahindra,2009,295000,64000,Diesel
|
580 |
+
611,Toyota Corolla Altis,Toyota,2010,185000,55000,Petrol
|
581 |
+
612,Tata Manza Aqua,Tata,2014,160000,200000,Diesel
|
582 |
+
615,Renault Kwid 1.0,Renault,2018,290000,2137,Petrol
|
583 |
+
617,Tata Venture EX,Tata,2013,100000,30000,Diesel
|
584 |
+
618,Maruti Suzuki Swift,Maruti,2014,315000,44000,Petrol
|
585 |
+
620,Skoda Octavia Classic,Skoda,2006,114990,65000,Diesel
|
586 |
+
621,Maruti Suzuki Omni,Maruti,2012,120000,160000,LPG
|
587 |
+
622,Chevrolet Beat Diesel,Chevrolet,2011,125000,56000,Diesel
|
588 |
+
623,Tata Sumo Gold,Tata,2012,210000,75000,Diesel
|
589 |
+
625,Hyundai Verna 1.6,Hyundai,2018,855000,42000,Diesel
|
590 |
+
626,Tata Sumo Gold,Tata,2012,210000,75000,Diesel
|
591 |
+
627,Mahindra Scorpio 2.6,Mahindra,2007,260000,56000,Diesel
|
592 |
+
628,Maruti Suzuki Zen,Maruti,2002,95000,10544,Petrol
|
593 |
+
629,Maruti Suzuki Swift,Maruti,2011,255000,64000,Petrol
|
594 |
+
630,Mahindra Scorpio SLX,Mahindra,2008,300000,70000,Diesel
|
595 |
+
631,Hyundai Grand i10,Hyundai,2014,340000,25000,Petrol
|
596 |
+
632,Hyundai Elite i20,Hyundai,2017,550000,15000,Petrol
|
597 |
+
633,Ford Ikon 1.6,Ford,2003,60000,50000,Petrol
|
598 |
+
636,Toyota Innova 2.5,Toyota,2011,750000,147000,Diesel
|
599 |
+
637,Nissan Sunny XL,Nissan,2011,230000,52000,Petrol
|
600 |
+
638,Chevrolet Beat LT,Chevrolet,2012,130000,90001,Diesel
|
601 |
+
639,Maruti Suzuki Alto,Maruti,2017,270000,21000,Petrol
|
602 |
+
640,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel
|
603 |
+
641,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel
|
604 |
+
642,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel
|
605 |
+
644,Toyota Innova 2.0,Toyota,2012,600000,80000,Diesel
|
606 |
+
646,Maruti Suzuki Swift,Maruti,2010,190000,74000,Diesel
|
607 |
+
647,Hyundai Elite i20,Hyundai,2015,500000,22000,Petrol
|
608 |
+
648,Mahindra XUV500 W10,Mahindra,2016,1065000,41000,Diesel
|
609 |
+
649,Volkswagen Polo Trendline,Volkswagen,2015,350000,25000,Diesel
|
610 |
+
650,Toyota Etios Liva,Toyota,2012,350000,85000,Diesel
|
611 |
+
651,Mahindra TUV300 T4,Mahindra,2016,540000,29500,Diesel
|
612 |
+
652,Hyundai Elite i20,Hyundai,2015,470000,30000,Petrol
|
613 |
+
653,Hyundai Santro Xing,Hyundai,2014,179000,57000,Petrol
|
614 |
+
654,Maruti Suzuki Zen,Maruti,2003,48000,60000,Petrol
|
615 |
+
655,Maruti Suzuki Ciaz,Maruti,2016,650000,50000,Petrol
|
616 |
+
656,Hyundai Eon Era,Hyundai,2013,190000,39700,Petrol
|
617 |
+
657,Hyundai Elantra 1.8,Hyundai,2012,500000,65000,Petrol
|
618 |
+
658,Maruti Suzuki Swift,Maruti,2010,270000,67000,Diesel
|
619 |
+
659,Maruti Suzuki Zen,Maruti,2008,125000,46000,Petrol
|
620 |
+
660,Hyundai Eon Era,Hyundai,2012,188000,38000,Petrol
|
621 |
+
661,Hyundai Grand i10,Hyundai,2016,380000,27000,Petrol
|
622 |
+
662,Hyundai Verna Fluidic,Hyundai,2011,365000,43000,Diesel
|
623 |
+
663,Ford EcoSport Trend,Ford,2014,465000,47000,Petrol
|
624 |
+
664,Hyundai i20 Magna,Hyundai,2011,240000,42000,Petrol
|
625 |
+
665,Chevrolet Beat Diesel,Chevrolet,2016,179999,19336,Diesel
|
626 |
+
666,Tata Indica eV2,Tata,2015,140000,60105,Diesel
|
627 |
+
667,Jaguar XF 2.2,Jaguar,2013,2190000,29000,Diesel
|
628 |
+
668,Audi Q5 2.0,Audi,2014,2390000,34000,Diesel
|
629 |
+
669,BMW 3 Series,BMW,2011,1075000,35000,Diesel
|
630 |
+
670,Maruti Suzuki Swift,Maruti,2015,475000,22000,Petrol
|
631 |
+
671,BMW X1 sDrive20d,BMW,2012,1025000,41000,Diesel
|
632 |
+
672,Maruti Suzuki S,Maruti,2016,615000,21000,Diesel
|
633 |
+
673,Maruti Suzuki Ertiga,Maruti,2013,475000,48000,Diesel
|
634 |
+
674,Maruti Suzuki Alto,Maruti,2016,270000,38000,Petrol
|
635 |
+
675,Honda City SV,Honda,2014,475000,34000,Diesel
|
636 |
+
676,Volkswagen Vento Comfortline,Volkswagen,2011,240000,45933,Petrol
|
637 |
+
677,Honda City 1.5,Honda,2005,120000,68000,Petrol
|
638 |
+
678,Audi A4 2.0,Audi,2016,1900000,44000,Diesel
|
639 |
+
679,Mahindra KUV100,Mahindra,2017,360000,35000,Diesel
|
640 |
+
680,Tata Zest XE,Tata,2018,450000,102563,Diesel
|
641 |
+
681,Mahindra XUV500 W8,Mahindra,2015,900000,28600,Diesel
|
642 |
+
682,Maruti Suzuki Swift,Maruti,2017,650000,41800,Diesel
|
643 |
+
683,Tata Sumo Gold,Tata,2014,275000,116000,Diesel
|
644 |
+
684,Maruti Suzuki Swift,Maruti,2009,210000,59000,Petrol
|
645 |
+
685,Mahindra Scorpio 2.6,Mahindra,2004,175000,58000,Diesel
|
646 |
+
686,Maruti Suzuki Omni,Maruti,2009,85000,45000,Petrol
|
647 |
+
687,Mitsubishi Pajero Sport,Mitsubishi,2015,1490000,42590,Diesel
|
648 |
+
688,Renault Duster,Renault,2014,800000,7400,Diesel
|
649 |
+
689,Volkswagen Jetta Comfortline,Volkswagen,2009,450000,54500,Diesel
|
650 |
+
690,Maruti Suzuki Ertiga,Maruti,2012,1000000,200000,Diesel
|
651 |
+
691,Audi A4 2.0,Audi,2013,1510000,27000,Diesel
|
652 |
+
692,Volvo S80 Summum,Volvo,2015,1850000,42000,Diesel
|
653 |
+
693,Toyota Corolla Altis,Toyota,2014,790000,29000,Petrol
|
654 |
+
694,Mitsubishi Pajero Sport,Mitsubishi,2015,1725000,37000,Diesel
|
655 |
+
695,Chevrolet Beat LT,Chevrolet,2012,135000,36000,Petrol
|
656 |
+
696,BMW X1,BMW,2011,1000000,34000,Diesel
|
657 |
+
697,Datsun Redi GO,Datsun,2018,299999,7000,Petrol
|
658 |
+
698,Mercedes Benz C,Mercedes,2009,1225000,76000,Diesel
|
659 |
+
699,Mahindra Scorpio SLX,Mahindra,2004,175000,60000,Diesel
|
660 |
+
700,Volkswagen Vento Comfortline,Volkswagen,2011,200000,95000,Diesel
|
661 |
+
701,Tata Indigo CS,Tata,2017,270000,50000,Diesel
|
662 |
+
702,Ford Figo Petrol,Ford,2019,525000,0,Petrol
|
663 |
+
703,Honda City ZX,Honda,2006,180000,50000,Petrol
|
664 |
+
704,Maruti Suzuki Wagon,Maruti,2008,140000,68000,Petrol
|
665 |
+
705,Ford EcoSport Trend,Ford,2014,400000,16000,Petrol
|
666 |
+
706,Maruti Suzuki Swift,Maruti,2016,499000,51000,Diesel
|
667 |
+
707,Maruti Suzuki Omni,Maruti,2009,85000,56000,Petrol
|
668 |
+
708,Maruti Suzuki Zen,Maruti,2004,70000,100000,Petrol
|
669 |
+
709,Renault Duster RxL,Renault,2015,550000,36000,Petrol
|
670 |
+
710,Maruti Suzuki Swift,Maruti,2014,370000,11523,Petrol
|
671 |
+
711,Maruti Suzuki Baleno,Maruti,2018,690000,1000,Petrol
|
672 |
+
712,Honda WR V,Honda,2009,250000,60000,Petrol
|
673 |
+
713,Tata Indigo CS,Tata,2016,110000,85000,Diesel
|
674 |
+
714,Renault Duster 110,Renault,2013,490000,38600,Diesel
|
675 |
+
715,Mahindra Scorpio LX,Mahindra,2009,320000,95500,Diesel
|
676 |
+
716,Maruti Suzuki Zen,Maruti,2004,68000,56000,Petrol
|
677 |
+
717,Maruti Suzuki Wagon,Maruti,2014,130000,37458,Petrol
|
678 |
+
718,Maruti Suzuki SX4,Maruti,2016,970000,85960,Diesel
|
679 |
+
719,Audi A3 Cabriolet,Audi,2015,3100000,12516,Petrol
|
680 |
+
720,Hyundai Eon D,Hyundai,2018,280000,35000,Petrol
|
681 |
+
721,Maruti Suzuki Zen,Maruti,2009,125000,0,Petrol
|
682 |
+
722,Mahindra Scorpio SLX,Mahindra,2008,285000,80000,Diesel
|
683 |
+
724,Hyundai Santro AE,Hyundai,2011,165000,45000,Petrol
|
684 |
+
726,Maruti Suzuki Swift,Maruti,2009,250000,51000,Diesel
|
685 |
+
727,Mahindra Scorpio S4,Mahindra,2015,865000,30000,Diesel
|
686 |
+
729,Mahindra Xylo D2,Mahindra,2011,390000,48000,Diesel
|
687 |
+
730,Hyundai Santro,Hyundai,2003,60000,51000,Petrol
|
688 |
+
731,Chevrolet Beat LT,Chevrolet,2015,215000,90000,Diesel
|
689 |
+
732,Maruti Suzuki Swift,Maruti,2015,475000,43000,Diesel
|
690 |
+
733,Mahindra XUV500 W8,Mahindra,2015,899000,53000,Diesel
|
691 |
+
734,Toyota Fortuner 3.0,Toyota,2013,1499000,97000,Diesel
|
692 |
+
735,Maruti Suzuki Alto,Maruti,2013,240000,20000,Petrol
|
693 |
+
736,Hyundai Getz GLE,Hyundai,2007,99000,55000,Petrol
|
694 |
+
737,Maruti Suzuki Swift,Maruti,2014,260000,120000,Diesel
|
695 |
+
738,Hyundai Creta 1.6,Hyundai,2019,1200000,0,Petrol
|
696 |
+
739,Hyundai Santro Xing,Hyundai,2007,115000,46000,Petrol
|
697 |
+
740,Hyundai Santro Xing,Hyundai,2009,88000,43200,Petrol
|
698 |
+
741,Mahindra Xylo D2,Mahindra,2011,390000,56000,Diesel
|
699 |
+
742,Hyundai Santro Xing,Hyundai,2007,135000,42000,Petrol
|
700 |
+
743,Tata Indica V2,Tata,2009,90000,30600,Diesel
|
701 |
+
744,Hyundai i10 Sportz,Hyundai,2011,220000,38000,Petrol
|
702 |
+
745,Hyundai Grand i10,Hyundai,2017,424999,2550,Petrol
|
703 |
+
746,Hyundai Santro Xing,Hyundai,2007,135000,47000,Petrol
|
704 |
+
747,Honda City 1.5,Honda,2005,95000,41000,Petrol
|
705 |
+
748,Nissan Micra XL,Nissan,2017,430000,62500,Diesel
|
706 |
+
749,Honda City 1.5,Honda,2005,115000,68000,Petrol
|
707 |
+
750,Maruti Suzuki Alto,Maruti,2015,215000,50000,Petrol
|
708 |
+
751,Maruti Suzuki Wagon,Maruti,2004,53000,69000,Petrol
|
709 |
+
752,Maruti Suzuki Ertiga,Maruti,2012,500000,48000,Diesel
|
710 |
+
753,Tata Indica eV2,Tata,2012,85000,55000,Diesel
|
711 |
+
754,Maruti Suzuki Omni,Maruti,2013,165000,25000,Petrol
|
712 |
+
755,Hyundai Eon Era,Hyundai,2014,200000,28400,Petrol
|
713 |
+
756,Hyundai Eon,Hyundai,2014,200000,28000,Petrol
|
714 |
+
757,Maruti Suzuki Swift,Maruti,2015,425000,42000,Diesel
|
715 |
+
759,Hyundai Verna 1.6,Hyundai,2012,600000,29000,Diesel
|
716 |
+
760,Chevrolet Tavera LS,Chevrolet,2005,130000,68485,Diesel
|
717 |
+
761,Tata Tiago Revotron,Tata,2018,430000,3500,Petrol
|
718 |
+
762,Tata Tiago Revotorq,Tata,2019,568500,0,Petrol
|
719 |
+
765,Maruti Suzuki Zen,Maruti,2006,71000,32000,Petrol
|
720 |
+
766,Mahindra KUV100 K8,Mahindra,2018,560000,8000,Diesel
|
721 |
+
767,Ford EcoSport Titanium,Ford,2014,590000,34000,Diesel
|
722 |
+
768,Hindustan Motors Ambassador,Hindustan,1995,750000,37000,Petrol
|
723 |
+
769,Ford Fusion 1.4,Ford,2007,125000,85455,Diesel
|
724 |
+
770,Hyundai Santro Xing,Hyundai,2007,135000,46000,Petrol
|
725 |
+
771,Hyundai Santro,Hyundai,2002,60000,47000,Petrol
|
726 |
+
772,Fiat Linea Emotion,Fiat,2009,120000,64000,Petrol
|
727 |
+
773,Ford Ikon 1.3,Ford,2008,95000,46000,Petrol
|
728 |
+
774,Maruti Suzuki Omni,Maruti,2017,240000,8000,Petrol
|
729 |
+
775,Tata Indica V2,Tata,2012,115000,64000,Diesel
|
730 |
+
776,Mahindra Scorpio S4,Mahindra,2015,795000,63000,Diesel
|
731 |
+
777,Hyundai Santro Xing,Hyundai,2007,55000,65000,Petrol
|
732 |
+
778,Mahindra Xylo D2,Mahindra,2009,300000,62000,Diesel
|
733 |
+
779,Hyundai Grand i10,Hyundai,2014,320000,41000,Petrol
|
734 |
+
780,Maruti Suzuki Alto,Maruti,2015,265000,14000,Petrol
|
735 |
+
781,Toyota Corolla,Toyota,2006,160000,40000,Petrol
|
736 |
+
782,Hyundai Eon Magna,Hyundai,2017,300000,1600,Petrol
|
737 |
+
783,Tata Sumo Grande,Tata,2010,130000,90000,Diesel
|
738 |
+
784,Maruti Suzuki Swift,Maruti,2011,250000,58000,Diesel
|
739 |
+
785,Volkswagen Polo Highline1.2L,Volkswagen,2013,380000,27000,Petrol
|
740 |
+
786,Maruti Suzuki Alto,Maruti,2003,42000,60000,Petrol
|
741 |
+
787,Tata Tiago Revotron,Tata,2017,400000,31000,Petrol
|
742 |
+
788,Maruti Suzuki Swift,Maruti,2009,120000,90000,Diesel
|
743 |
+
789,Maruti Suzuki Swift,Maruti,2009,120000,90000,Diesel
|
744 |
+
790,Tata Indigo eCS,Tata,2016,130000,150000,Diesel
|
745 |
+
791,Chevrolet Beat LS,Chevrolet,2014,189000,31000,Diesel
|
746 |
+
793,Mahindra Xylo E8,Mahindra,2011,365000,43000,Diesel
|
747 |
+
794,Hyundai Eon D,Hyundai,2013,170000,20000,Petrol
|
748 |
+
804,Tata Sumo Gold,Tata,2013,215000,100000,Petrol
|
749 |
+
813,Tata Nano,Tata,2013,60000,7000,Petrol
|
750 |
+
814,Hyundai Elite i20,Hyundai,2017,599999,31000,Petrol
|
751 |
+
815,Hyundai i10 Magna,Hyundai,2009,400000,33000,Petrol
|
752 |
+
816,Hyundai Creta,Hyundai,2016,900000,60000,Diesel
|
753 |
+
817,Volkswagen Polo,Volkswagen,2013,299999,48000,Diesel
|
754 |
+
818,Maruti Suzuki Dzire,Maruti,2014,374999,33000,Petrol
|
755 |
+
819,Tata Bolt XM,Tata,2015,600000,15000,Petrol
|
756 |
+
820,Maruti Suzuki Alto,Maruti,2005,70000,47000,Petrol
|
757 |
+
821,Maruti Suzuki Alto,Maruti,2005,100000,40000,Petrol
|
758 |
+
823,Maruti Suzuki Ritz,Maruti,2010,150000,38000,Diesel
|
759 |
+
824,Maruti Suzuki Alto,Maruti,2017,225000,12500,Petrol
|
760 |
+
825,Maruti Suzuki Dzire,Maruti,2009,210000,42000,Petrol
|
761 |
+
827,Hyundai i20 Asta,Hyundai,2014,425000,31000,Petrol
|
762 |
+
828,Maruti Suzuki Swift,Maruti,2008,162000,60000,Diesel
|
763 |
+
829,Tata Indica V2,Tata,2005,60000,80000,Diesel
|
764 |
+
830,Mahindra Scorpio VLX,Mahindra,2014,650000,77000,Diesel
|
765 |
+
831,Toyota Innova 2.5,Toyota,2012,750000,75000,Diesel
|
766 |
+
832,Mahindra Xylo E8,Mahindra,2010,375000,40000,Diesel
|
767 |
+
833,Hyundai i20 Magna,Hyundai,2011,230000,47000,Petrol
|
768 |
+
834,Maruti Suzuki Omni,Maruti,2000,35999,60000,Petrol
|
769 |
+
835,Mahindra KUV100,Mahindra,2016,380000,26500,Petrol
|
770 |
+
836,Mahindra KUV100 K8,Mahindra,2019,560000,2875,Petrol
|
771 |
+
837,Datsun Go Plus,Datsun,2016,285000,13900,Petrol
|
772 |
+
838,Ford Endeavor 4x4,Ford,2019,2900000,9000,Diesel
|
773 |
+
839,Tata Indica V2,Tata,2005,39999,80000,Diesel
|
774 |
+
840,Hyundai Santro Xing,Hyundai,2006,85000,60000,Petrol
|
775 |
+
841,Maruti Suzuki Wagon,Maruti,2016,395000,20000,Petrol
|
776 |
+
842,Maruti Suzuki Swift,Maruti,2008,175000,58000,Diesel
|
777 |
+
843,Maruti Suzuki Alto,Maruti,2019,400000,1500,Petrol
|
778 |
+
844,Toyota Innova 2.5,Toyota,2011,750000,75000,Diesel
|
779 |
+
846,Maruti Suzuki Alto,Maruti,2016,250000,2450,Petrol
|
780 |
+
847,Maruti Suzuki Alto,Maruti,2019,425000,1625,Petrol
|
781 |
+
849,Volkswagen Polo Highline1.2L,Volkswagen,2017,525000,45000,Petrol
|
782 |
+
850,Mahindra Logan,Mahindra,2009,130000,65000,Diesel
|
783 |
+
851,Maruti Suzuki 800,Maruti,2000,30000,33400,Petrol
|
784 |
+
852,Mahindra Scorpio,Mahindra,2011,475000,60123,Diesel
|
785 |
+
853,Chevrolet Sail 1.2,Chevrolet,2013,300000,28000,Petrol
|
786 |
+
855,Hyundai Santro AE,Hyundai,2003,60000,70000,Petrol
|
787 |
+
856,Maruti Suzuki Wagon,Maruti,2006,100000,7000,Petrol
|
788 |
+
857,Hyundai Eon,Hyundai,2018,260000,25000,Petrol
|
789 |
+
858,Tata Manza,Tata,2015,100000,100000,Diesel
|
790 |
+
860,Toyota Etios G,Toyota,2013,265000,42000,Petrol
|
791 |
+
861,Hyundai Getz Prime,Hyundai,2009,115000,20000,Petrol
|
792 |
+
862,Toyota Qualis,Toyota,2003,180000,100000,Diesel
|
793 |
+
863,Hyundai Santro Xing,Hyundai,2004,45000,137495,Petrol
|
794 |
+
864,Tata Indica eV2,Tata,2016,50500,91200,Diesel
|
795 |
+
865,Honda City 1.5,Honda,2009,270000,55000,Petrol
|
796 |
+
866,Tata Zest XE,Tata,2017,290000,120000,Diesel
|
797 |
+
867,Mahindra Quanto C4,Mahindra,2013,325000,63000,Diesel
|
798 |
+
868,Tata Indigo eCS,Tata,2016,160000,104000,Diesel
|
799 |
+
869,Maruti Suzuki Swift,Maruti,2016,350000,146000,Diesel
|
800 |
+
870,Hyundai Elite i20,Hyundai,2011,290000,40000,Petrol
|
801 |
+
871,Hyundai i20 Select,Hyundai,2011,290000,40000,Petrol
|
802 |
+
872,Chevrolet Tavera Neo,Chevrolet,2007,465000,100800,Diesel
|
803 |
+
873,Maruti Suzuki Dzire,Maruti,2016,325000,150000,Diesel
|
804 |
+
874,Hyundai Elite i20,Hyundai,2018,510000,2100,Petrol
|
805 |
+
875,Honda City VX,Honda,2016,860000,95000,Petrol
|
806 |
+
876,Maruti Suzuki Dzire,Maruti,2016,450000,2500,Diesel
|
807 |
+
877,Hyundai Getz,Hyundai,2006,125000,80000,Petrol
|
808 |
+
878,Mercedes Benz C,Mercedes,2006,500001,15000,Petrol
|
809 |
+
879,Maruti Suzuki Alto,Maruti,2005,95000,65000,Petrol
|
810 |
+
880,Maruti Suzuki Swift,Maruti,2009,250000,51000,Diesel
|
811 |
+
881,Skoda Fabia,Skoda,2009,110000,45000,Petrol
|
812 |
+
883,Maruti Suzuki Ritz,Maruti,2011,270000,50000,Petrol
|
813 |
+
885,Tata Indica V2,Tata,2009,110000,30000,Diesel
|
814 |
+
886,Toyota Corolla Altis,Toyota,2009,300000,132000,Petrol
|
815 |
+
888,Tata Zest XM,Tata,2018,260000,27000,Diesel
|
816 |
+
889,Mahindra Quanto C8,Mahindra,2013,390000,40000,Diesel
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
blinker==1.6.2
|
2 |
+
click==8.1.3
|
3 |
+
Flask==2.3.1
|
4 |
+
itsdangerous==2.1.2
|
5 |
+
Jinja2==3.1.2
|
6 |
+
joblib==1.2.0
|
7 |
+
MarkupSafe==2.1.2
|
8 |
+
numpy==1.24.3
|
9 |
+
pandas==2.0.1
|
10 |
+
python-dateutil==2.8.2
|
11 |
+
pytz==2023.3
|
12 |
+
scikit-learn==1.2.2
|
13 |
+
scipy==1.10.1
|
14 |
+
six==1.16.0
|
15 |
+
sklearn==0.0.post4
|
16 |
+
threadpoolctl==3.1.0
|
17 |
+
tzdata==2023.3
|
18 |
+
Werkzeug==2.3.2
|