Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,7 @@ import numpy as np
|
|
5 |
import pickle
|
6 |
from datetime import datetime
|
7 |
|
8 |
-
|
9 |
-
flask_app = Flask(__name__)
|
10 |
|
11 |
FACE_DATA_DIR = 'face_data'
|
12 |
FACE_CASCADE_PATH = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
@@ -15,20 +14,20 @@ if not os.path.exists(FACE_DATA_DIR):
|
|
15 |
os.makedirs(FACE_DATA_DIR)
|
16 |
|
17 |
face_cascade = cv2.CascadeClassifier(FACE_CASCADE_PATH)
|
|
|
18 |
camera = None
|
19 |
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
|
20 |
is_trained = False
|
|
|
21 |
|
22 |
def load_face_data():
|
23 |
global is_trained
|
24 |
-
faces = []
|
25 |
-
|
26 |
-
names = []
|
27 |
-
|
28 |
if os.path.exists(os.path.join(FACE_DATA_DIR, 'names.pkl')):
|
29 |
with open(os.path.join(FACE_DATA_DIR, 'names.pkl'), 'rb') as f:
|
30 |
names = pickle.load(f)
|
31 |
-
|
32 |
for idx, name in enumerate(names):
|
33 |
face_dir = os.path.join(FACE_DATA_DIR, name)
|
34 |
if os.path.exists(face_dir):
|
@@ -38,7 +37,7 @@ def load_face_data():
|
|
38 |
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
|
39 |
faces.append(img)
|
40 |
labels.append(idx)
|
41 |
-
|
42 |
if faces:
|
43 |
face_recognizer.train(faces, np.array(labels))
|
44 |
is_trained = True
|
@@ -47,153 +46,149 @@ def load_face_data():
|
|
47 |
|
48 |
def get_camera():
|
49 |
global camera
|
50 |
-
if
|
51 |
-
camera
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
@
|
55 |
def index():
|
56 |
names = load_face_data()
|
57 |
-
return render_template('index.html', registered_faces=names)
|
58 |
|
59 |
-
@
|
60 |
def register():
|
61 |
-
return render_template('register.html')
|
62 |
|
63 |
-
@
|
64 |
def recognize():
|
65 |
-
return render_template('recognize.html')
|
66 |
|
67 |
-
@
|
68 |
def video_feed():
|
|
|
|
|
|
|
69 |
def generate():
|
70 |
-
|
71 |
while True:
|
72 |
-
success, frame =
|
73 |
if not success:
|
74 |
break
|
75 |
ret, buffer = cv2.imencode('.jpg', frame)
|
76 |
frame = buffer.tobytes()
|
77 |
yield (b'--frame\r\n'
|
78 |
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
|
|
|
79 |
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
|
80 |
|
81 |
-
@
|
82 |
def recognition_feed():
|
|
|
|
|
|
|
83 |
def generate():
|
84 |
-
|
85 |
names = load_face_data()
|
86 |
-
|
87 |
while True:
|
88 |
-
success, frame =
|
89 |
if not success:
|
90 |
break
|
|
|
91 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
92 |
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
93 |
-
|
94 |
for (x, y, w, h) in faces:
|
95 |
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
96 |
-
|
97 |
if is_trained and names:
|
98 |
roi_gray = gray[y:y+h, x:x+w]
|
99 |
roi_gray = cv2.resize(roi_gray, (100, 100))
|
|
|
100 |
id_, confidence = face_recognizer.predict(roi_gray)
|
101 |
-
|
102 |
if confidence < 100:
|
103 |
name = names[id_]
|
104 |
confidence_text = f"{name} ({round(100-confidence)}%)"
|
105 |
else:
|
106 |
confidence_text = "Unknown"
|
107 |
-
|
108 |
-
cv2.putText(frame, confidence_text, (x, y-10),
|
109 |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
110 |
-
|
111 |
ret, buffer = cv2.imencode('.jpg', frame)
|
112 |
frame = buffer.tobytes()
|
113 |
yield (b'--frame\r\n'
|
114 |
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
|
|
|
115 |
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
|
116 |
|
117 |
-
@
|
118 |
def capture_face():
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
if not name:
|
121 |
return jsonify({'error': 'Nama tidak boleh kosong'})
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
129 |
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
130 |
-
|
131 |
if len(faces) == 0:
|
132 |
return jsonify({'error': 'Tidak ada wajah yang terdeteksi'})
|
133 |
if len(faces) > 1:
|
134 |
return jsonify({'error': 'Terdeteksi lebih dari satu wajah'})
|
135 |
-
|
136 |
(x, y, w, h) = faces[0]
|
137 |
face_roi = gray[y:y+h, x:x+w]
|
138 |
face_roi = cv2.resize(face_roi, (100, 100))
|
139 |
-
|
140 |
person_dir = os.path.join(FACE_DATA_DIR, name)
|
141 |
if not os.path.exists(person_dir):
|
142 |
os.makedirs(person_dir)
|
143 |
-
|
144 |
-
|
145 |
-
filename = f"{timestamp}.jpg"
|
146 |
cv2.imwrite(os.path.join(person_dir, filename), face_roi)
|
147 |
-
|
148 |
names_file = os.path.join(FACE_DATA_DIR, 'names.pkl')
|
149 |
if os.path.exists(names_file):
|
150 |
with open(names_file, 'rb') as f:
|
151 |
names = pickle.load(f)
|
152 |
else:
|
153 |
names = []
|
154 |
-
|
155 |
if name not in names:
|
156 |
names.append(name)
|
157 |
with open(names_file, 'wb') as f:
|
158 |
pickle.dump(names, f)
|
159 |
-
|
160 |
load_face_data()
|
161 |
return jsonify({'success': f'Wajah {name} berhasil didaftarkan'})
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
person_dir = os.path.join(FACE_DATA_DIR, name)
|
166 |
-
if os.path.exists(person_dir):
|
167 |
-
for filename in os.listdir(person_dir):
|
168 |
-
os.remove(os.path.join(person_dir, filename))
|
169 |
-
os.rmdir(person_dir)
|
170 |
-
|
171 |
-
names_file = os.path.join(FACE_DATA_DIR, 'names.pkl')
|
172 |
-
if os.path.exists(names_file):
|
173 |
-
with open(names_file, 'rb') as f:
|
174 |
-
names = pickle.load(f)
|
175 |
-
if name in names:
|
176 |
-
names.remove(name)
|
177 |
-
with open(names_file, 'wb') as f:
|
178 |
-
pickle.dump(names, f)
|
179 |
-
load_face_data()
|
180 |
-
return redirect(url_for('index'))
|
181 |
-
|
182 |
-
# ==== Bungkus Flask ke FastAPI untuk Hugging Face ====
|
183 |
-
from fastapi import FastAPI
|
184 |
-
from fastapi.middleware.wsgi import WSGIMiddleware
|
185 |
-
|
186 |
-
app = FastAPI()
|
187 |
-
|
188 |
-
# Endpoint bawaan FastAPI
|
189 |
-
@app.get("/hello")
|
190 |
-
def greet_json():
|
191 |
-
return {"Hello": "World!"}
|
192 |
-
|
193 |
-
# Mount Flask app ke FastAPI
|
194 |
-
app.mount("/", WSGIMiddleware(flask_app))
|
195 |
-
|
196 |
-
# Jalankan dengan uvicorn kalau lokal
|
197 |
-
if __name__ == "__main__":
|
198 |
-
import uvicorn
|
199 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
5 |
import pickle
|
6 |
from datetime import datetime
|
7 |
|
8 |
+
app = Flask(__name__)
|
|
|
9 |
|
10 |
FACE_DATA_DIR = 'face_data'
|
11 |
FACE_CASCADE_PATH = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
|
|
14 |
os.makedirs(FACE_DATA_DIR)
|
15 |
|
16 |
face_cascade = cv2.CascadeClassifier(FACE_CASCADE_PATH)
|
17 |
+
|
18 |
camera = None
|
19 |
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
|
20 |
is_trained = False
|
21 |
+
has_webcam = os.path.exists("/dev/video0") # deteksi webcam
|
22 |
|
23 |
def load_face_data():
|
24 |
global is_trained
|
25 |
+
faces, labels, names = [], [], []
|
26 |
+
|
|
|
|
|
27 |
if os.path.exists(os.path.join(FACE_DATA_DIR, 'names.pkl')):
|
28 |
with open(os.path.join(FACE_DATA_DIR, 'names.pkl'), 'rb') as f:
|
29 |
names = pickle.load(f)
|
30 |
+
|
31 |
for idx, name in enumerate(names):
|
32 |
face_dir = os.path.join(FACE_DATA_DIR, name)
|
33 |
if os.path.exists(face_dir):
|
|
|
37 |
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
|
38 |
faces.append(img)
|
39 |
labels.append(idx)
|
40 |
+
|
41 |
if faces:
|
42 |
face_recognizer.train(faces, np.array(labels))
|
43 |
is_trained = True
|
|
|
46 |
|
47 |
def get_camera():
|
48 |
global camera
|
49 |
+
if has_webcam:
|
50 |
+
if camera is None:
|
51 |
+
camera = cv2.VideoCapture(0)
|
52 |
+
return camera
|
53 |
+
return None
|
54 |
|
55 |
+
@app.route('/')
|
56 |
def index():
|
57 |
names = load_face_data()
|
58 |
+
return render_template('index.html', registered_faces=names, has_webcam=has_webcam)
|
59 |
|
60 |
+
@app.route('/register')
|
61 |
def register():
|
62 |
+
return render_template('register.html', has_webcam=has_webcam)
|
63 |
|
64 |
+
@app.route('/recognize')
|
65 |
def recognize():
|
66 |
+
return render_template('recognize.html', has_webcam=has_webcam)
|
67 |
|
68 |
+
@app.route('/video_feed')
|
69 |
def video_feed():
|
70 |
+
if not has_webcam:
|
71 |
+
return "Webcam tidak tersedia di server ini", 404
|
72 |
+
|
73 |
def generate():
|
74 |
+
cam = get_camera()
|
75 |
while True:
|
76 |
+
success, frame = cam.read()
|
77 |
if not success:
|
78 |
break
|
79 |
ret, buffer = cv2.imencode('.jpg', frame)
|
80 |
frame = buffer.tobytes()
|
81 |
yield (b'--frame\r\n'
|
82 |
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
|
83 |
+
|
84 |
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
|
85 |
|
86 |
+
@app.route('/recognition_feed')
|
87 |
def recognition_feed():
|
88 |
+
if not has_webcam:
|
89 |
+
return "Webcam tidak tersedia di server ini", 404
|
90 |
+
|
91 |
def generate():
|
92 |
+
cam = get_camera()
|
93 |
names = load_face_data()
|
94 |
+
|
95 |
while True:
|
96 |
+
success, frame = cam.read()
|
97 |
if not success:
|
98 |
break
|
99 |
+
|
100 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
101 |
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
102 |
+
|
103 |
for (x, y, w, h) in faces:
|
104 |
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
105 |
+
|
106 |
if is_trained and names:
|
107 |
roi_gray = gray[y:y+h, x:x+w]
|
108 |
roi_gray = cv2.resize(roi_gray, (100, 100))
|
109 |
+
|
110 |
id_, confidence = face_recognizer.predict(roi_gray)
|
|
|
111 |
if confidence < 100:
|
112 |
name = names[id_]
|
113 |
confidence_text = f"{name} ({round(100-confidence)}%)"
|
114 |
else:
|
115 |
confidence_text = "Unknown"
|
116 |
+
|
117 |
+
cv2.putText(frame, confidence_text, (x, y-10),
|
118 |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
119 |
+
|
120 |
ret, buffer = cv2.imencode('.jpg', frame)
|
121 |
frame = buffer.tobytes()
|
122 |
yield (b'--frame\r\n'
|
123 |
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
|
124 |
+
|
125 |
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
|
126 |
|
127 |
+
@app.route('/capture_face', methods=['POST'])
|
128 |
def capture_face():
|
129 |
+
if has_webcam:
|
130 |
+
name = request.json.get('name', '').strip()
|
131 |
+
if not name:
|
132 |
+
return jsonify({'error': 'Nama tidak boleh kosong'})
|
133 |
+
|
134 |
+
cam = get_camera()
|
135 |
+
success, frame = cam.read()
|
136 |
+
if not success:
|
137 |
+
return jsonify({'error': 'Gagal mengambil gambar dari kamera'})
|
138 |
+
|
139 |
+
return save_face(name, frame)
|
140 |
+
else:
|
141 |
+
return jsonify({'error': 'Webcam tidak tersedia, gunakan /upload_face'})
|
142 |
+
|
143 |
+
@app.route('/upload_face', methods=['POST'])
|
144 |
+
def upload_face():
|
145 |
+
"""Upload foto untuk registrasi (tanpa webcam)"""
|
146 |
+
name = request.form.get('name', '').strip()
|
147 |
+
file = request.files.get('file')
|
148 |
+
|
149 |
if not name:
|
150 |
return jsonify({'error': 'Nama tidak boleh kosong'})
|
151 |
+
if not file:
|
152 |
+
return jsonify({'error': 'File tidak ditemukan'})
|
153 |
+
|
154 |
+
np_img = np.frombuffer(file.read(), np.uint8)
|
155 |
+
frame = cv2.imdecode(np_img, cv2.IMREAD_COLOR)
|
156 |
+
return save_face(name, frame)
|
157 |
+
|
158 |
+
def save_face(name, frame):
|
159 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
160 |
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
161 |
+
|
162 |
if len(faces) == 0:
|
163 |
return jsonify({'error': 'Tidak ada wajah yang terdeteksi'})
|
164 |
if len(faces) > 1:
|
165 |
return jsonify({'error': 'Terdeteksi lebih dari satu wajah'})
|
166 |
+
|
167 |
(x, y, w, h) = faces[0]
|
168 |
face_roi = gray[y:y+h, x:x+w]
|
169 |
face_roi = cv2.resize(face_roi, (100, 100))
|
170 |
+
|
171 |
person_dir = os.path.join(FACE_DATA_DIR, name)
|
172 |
if not os.path.exists(person_dir):
|
173 |
os.makedirs(person_dir)
|
174 |
+
|
175 |
+
filename = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}.jpg"
|
|
|
176 |
cv2.imwrite(os.path.join(person_dir, filename), face_roi)
|
177 |
+
|
178 |
names_file = os.path.join(FACE_DATA_DIR, 'names.pkl')
|
179 |
if os.path.exists(names_file):
|
180 |
with open(names_file, 'rb') as f:
|
181 |
names = pickle.load(f)
|
182 |
else:
|
183 |
names = []
|
184 |
+
|
185 |
if name not in names:
|
186 |
names.append(name)
|
187 |
with open(names_file, 'wb') as f:
|
188 |
pickle.dump(names, f)
|
189 |
+
|
190 |
load_face_data()
|
191 |
return jsonify({'success': f'Wajah {name} berhasil didaftarkan'})
|
192 |
|
193 |
+
if __name__ == '__main__':
|
194 |
+
app.run(debug=True, host='0.0.0.0', port=5000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|