Spaces:
Build error
Build error
brayden-gg
commited on
Commit
·
b65c5e3
1
Parent(s):
eca1306
added files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- DataLoader.py +278 -0
- SynthesisNetwork.py +0 -0
- __init__.py +0 -0
- app.py +187 -0
- config/GlobalVariables.py +5 -0
- config/__init__.py +0 -0
- config/__pycache__/GlobalVariables.cpython-38.pyc +0 -0
- config/__pycache__/GlobalVariables.cpython-39.pyc +0 -0
- config/__pycache__/__init__.cpython-38.pyc +0 -0
- config/__pycache__/__init__.cpython-39.pyc +0 -0
- convenience.py +555 -0
- data/writers/120/0.npy +3 -0
- data/writers/120/1.npy +3 -0
- data/writers/120/10.npy +3 -0
- data/writers/120/100.npy +3 -0
- data/writers/120/101.npy +3 -0
- data/writers/120/102.npy +3 -0
- data/writers/120/103.npy +3 -0
- data/writers/120/104.npy +3 -0
- data/writers/120/105.npy +3 -0
- data/writers/120/106.npy +3 -0
- data/writers/120/107.npy +3 -0
- data/writers/120/108.npy +3 -0
- data/writers/120/109.npy +3 -0
- data/writers/120/11.npy +3 -0
- data/writers/120/110.npy +3 -0
- data/writers/120/111.npy +3 -0
- data/writers/120/112.npy +3 -0
- data/writers/120/113.npy +3 -0
- data/writers/120/114.npy +3 -0
- data/writers/120/115.npy +3 -0
- data/writers/120/116.npy +3 -0
- data/writers/120/117.npy +3 -0
- data/writers/120/118.npy +3 -0
- data/writers/120/119.npy +3 -0
- data/writers/120/12.npy +3 -0
- data/writers/120/120.npy +3 -0
- data/writers/120/121.npy +3 -0
- data/writers/120/122.npy +3 -0
- data/writers/120/123.npy +3 -0
- data/writers/120/124.npy +3 -0
- data/writers/120/125.npy +3 -0
- data/writers/120/126.npy +3 -0
- data/writers/120/127.npy +3 -0
- data/writers/120/128.npy +3 -0
- data/writers/120/129.npy +3 -0
- data/writers/120/13.npy +3 -0
- data/writers/120/130.npy +3 -0
- data/writers/120/131.npy +3 -0
- data/writers/120/132.npy +3 -0
DataLoader.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
import pickle
|
7 |
+
from config.GlobalVariables import *
|
8 |
+
|
9 |
+
np.random.seed(0)
|
10 |
+
|
11 |
+
class DataLoader():
|
12 |
+
def __init__(self, num_writer=2, num_samples=5, divider=10.0, datadir='./data/writers'):
|
13 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
self.num_writer = num_writer
|
15 |
+
self.num_samples = num_samples
|
16 |
+
self.divider = divider
|
17 |
+
self.datadir = datadir
|
18 |
+
print ('self.datadir : ', self.datadir)
|
19 |
+
self.total_writers = len([name for name in os.listdir(datadir)])
|
20 |
+
|
21 |
+
def next_batch(self, TYPE='TRAIN', uid=-1, tids=[]):
|
22 |
+
all_sentence_level_stroke_in = []
|
23 |
+
all_sentence_level_stroke_out = []
|
24 |
+
all_sentence_level_stroke_length = []
|
25 |
+
all_sentence_level_term = []
|
26 |
+
all_sentence_level_char = []
|
27 |
+
all_sentence_level_char_length = []
|
28 |
+
all_word_level_stroke_in = []
|
29 |
+
all_word_level_stroke_out = []
|
30 |
+
all_word_level_stroke_length = []
|
31 |
+
all_word_level_term = []
|
32 |
+
all_word_level_char = []
|
33 |
+
all_word_level_char_length = []
|
34 |
+
all_segment_level_stroke_in = []
|
35 |
+
all_segment_level_stroke_out = []
|
36 |
+
all_segment_level_stroke_length = []
|
37 |
+
all_segment_level_term = []
|
38 |
+
all_segment_level_char = []
|
39 |
+
all_segment_level_char_length = []
|
40 |
+
|
41 |
+
while len(all_sentence_level_stroke_in) < self.num_writer:
|
42 |
+
if uid < 0:
|
43 |
+
if TYPE == 'TRAIN':
|
44 |
+
if self.datadir == './data/NEW_writers' or self.datadir == './data/writers':
|
45 |
+
uid = np.random.choice([i for i in range(150)])
|
46 |
+
else:
|
47 |
+
if self.device == 'cpu':
|
48 |
+
uid = np.random.choice([i for i in range(20)])
|
49 |
+
else:
|
50 |
+
uid = np.random.choice([i for i in range(294)])
|
51 |
+
else:
|
52 |
+
uid = np.random.choice([i for i in range(150,170)])
|
53 |
+
|
54 |
+
total_texts = len([name for name in os.listdir(self.datadir+'/'+str(uid))])
|
55 |
+
if len(tids) == 0:
|
56 |
+
tids = random.sample([i for i in range(total_texts)], self.num_samples)
|
57 |
+
|
58 |
+
user_sentence_level_stroke_in = []
|
59 |
+
user_sentence_level_stroke_out = []
|
60 |
+
user_sentence_level_stroke_length = []
|
61 |
+
user_sentence_level_term = []
|
62 |
+
user_sentence_level_char = []
|
63 |
+
user_sentence_level_char_length = []
|
64 |
+
user_word_level_stroke_in = []
|
65 |
+
user_word_level_stroke_out = []
|
66 |
+
user_word_level_stroke_length = []
|
67 |
+
user_word_level_term = []
|
68 |
+
user_word_level_char = []
|
69 |
+
user_word_level_char_length = []
|
70 |
+
user_segment_level_stroke_in = []
|
71 |
+
user_segment_level_stroke_out = []
|
72 |
+
user_segment_level_stroke_length = []
|
73 |
+
user_segment_level_term = []
|
74 |
+
user_segment_level_char = []
|
75 |
+
user_segment_level_char_length = []
|
76 |
+
|
77 |
+
# print ("uid: ", uid, "\ttids:", tids)
|
78 |
+
for tid in tids:
|
79 |
+
if self.datadir == './data/NEW_writers':
|
80 |
+
[sentence_level_raw_stroke, sentence_level_stroke_in, sentence_level_stroke_out, sentence_level_term, sentence_level_char, word_level_raw_stroke, word_level_stroke_in, word_level_stroke_out, word_level_term, word_level_char, segment_level_raw_stroke, segment_level_stroke_in, segment_level_stroke_out, segment_level_term, segment_level_char] = \
|
81 |
+
np.load(self.datadir+'/'+str(uid)+'/'+str(tid)+'.npy', allow_pickle=True, encoding='bytes')
|
82 |
+
|
83 |
+
elif self.datadir == './data/DW_writers':
|
84 |
+
[sentence_level_raw_stroke, sentence_level_char, sentence_level_term, sentence_level_stroke_in, sentence_level_stroke_out,
|
85 |
+
word_level_raw_stroke, word_level_char, word_level_term, word_level_stroke_in, word_level_stroke_out,
|
86 |
+
segment_level_raw_stroke, segment_level_char, segment_level_term, segment_level_stroke_in, segment_level_stroke_out, _] = \
|
87 |
+
np.load(self.datadir+'/'+str(uid)+'/'+str(tid)+'.npy', allow_pickle=True, encoding='bytes')
|
88 |
+
|
89 |
+
elif self.datadir == './data/VALID_DW_writers':
|
90 |
+
[sentence_level_raw_stroke, sentence_level_char, sentence_level_term, sentence_level_stroke_in, sentence_level_stroke_out,
|
91 |
+
word_level_raw_stroke, word_level_char, word_level_term, word_level_stroke_in, word_level_stroke_out,
|
92 |
+
segment_level_raw_stroke, segment_level_char, segment_level_term, segment_level_stroke_in, segment_level_stroke_out, _] = \
|
93 |
+
np.load(self.datadir+'/'+str(uid)+'/'+str(tid)+'.npy', allow_pickle=True, encoding='bytes')
|
94 |
+
|
95 |
+
else:
|
96 |
+
[sentence_level_raw_stroke, sentence_level_stroke_in, sentence_level_stroke_out, sentence_level_term, sentence_level_char, word_level_raw_stroke, word_level_stroke_in, word_level_stroke_out, word_level_term, word_level_char, segment_level_raw_stroke, segment_level_stroke_in, segment_level_stroke_out, segment_level_term, segment_level_char, _] = \
|
97 |
+
np.load(self.datadir+'/'+str(uid)+'/'+str(tid)+'.npy', allow_pickle=True, encoding='bytes')
|
98 |
+
|
99 |
+
if self.datadir == './data/DW_writers':
|
100 |
+
sentence_level_char = sentence_level_char[1:]
|
101 |
+
sentence_level_term = sentence_level_term[1:]
|
102 |
+
|
103 |
+
if self.datadir == './data/VALID_DW_writers':
|
104 |
+
sentence_level_char = sentence_level_char[1:]
|
105 |
+
sentence_level_term = sentence_level_term[1:]
|
106 |
+
|
107 |
+
while True:
|
108 |
+
if len(sentence_level_term) == 0:
|
109 |
+
break
|
110 |
+
if sentence_level_term[-1] != 1.0:
|
111 |
+
sentence_level_raw_stroke = sentence_level_raw_stroke[:-1]
|
112 |
+
sentence_level_char = sentence_level_char[:-1]
|
113 |
+
sentence_level_term = sentence_level_term[:-1]
|
114 |
+
sentence_level_stroke_in = sentence_level_stroke_in[:-1]
|
115 |
+
sentence_level_stroke_out = sentence_level_stroke_out[:-1]
|
116 |
+
else:
|
117 |
+
break
|
118 |
+
|
119 |
+
tmp = []
|
120 |
+
for i, t in enumerate(sentence_level_term):
|
121 |
+
if t == 1:
|
122 |
+
tmp.append(sentence_level_char[i])
|
123 |
+
|
124 |
+
a = np.ones_like(sentence_level_stroke_in)
|
125 |
+
a[:,:2] /= self.divider
|
126 |
+
|
127 |
+
if len(sentence_level_stroke_in) == len(sentence_level_term) and len(tmp) > 0 and len(sentence_level_stroke_in) > 0:
|
128 |
+
user_sentence_level_stroke_in.append(np.asarray(sentence_level_stroke_in) * a)
|
129 |
+
user_sentence_level_stroke_out.append(np.asarray(sentence_level_stroke_out) * a)
|
130 |
+
user_sentence_level_stroke_length.append(len(sentence_level_stroke_in))
|
131 |
+
user_sentence_level_char.append(np.asarray(tmp))
|
132 |
+
user_sentence_level_term.append(np.asarray(sentence_level_term))
|
133 |
+
user_sentence_level_char_length.append(len(tmp))
|
134 |
+
|
135 |
+
for wid in range(len(word_level_stroke_in)):
|
136 |
+
each_word_level_stroke_in = word_level_stroke_in[wid]
|
137 |
+
each_word_level_stroke_out = word_level_stroke_out[wid]
|
138 |
+
|
139 |
+
if self.datadir == './data/DW_writers':
|
140 |
+
each_word_level_term = word_level_term[wid][1:]
|
141 |
+
each_word_level_char = word_level_char[wid][1:]
|
142 |
+
elif self.datadir == './data/VALID_DW_writers':
|
143 |
+
each_word_level_term = word_level_term[wid][1:]
|
144 |
+
each_word_level_char = word_level_char[wid][1:]
|
145 |
+
else:
|
146 |
+
each_word_level_term = word_level_term[wid]
|
147 |
+
each_word_level_char = word_level_char[wid]
|
148 |
+
|
149 |
+
|
150 |
+
# assert (len(each_word_level_stroke_in) == len(each_word_level_char) == len(each_word_level_term))
|
151 |
+
while True:
|
152 |
+
if len(each_word_level_term) == 0:
|
153 |
+
break
|
154 |
+
if each_word_level_term[-1] != 1.0:
|
155 |
+
# each_word_level_raw_stroke = each_word_level_raw_stroke[:-1]
|
156 |
+
each_word_level_char = each_word_level_char[:-1]
|
157 |
+
each_word_level_term = each_word_level_term[:-1]
|
158 |
+
each_word_level_stroke_in = each_word_level_stroke_in[:-1]
|
159 |
+
each_word_level_stroke_out = each_word_level_stroke_out[:-1]
|
160 |
+
else:
|
161 |
+
break
|
162 |
+
|
163 |
+
tmp = []
|
164 |
+
for i, t in enumerate(each_word_level_term):
|
165 |
+
if t == 1:
|
166 |
+
tmp.append(each_word_level_char[i])
|
167 |
+
|
168 |
+
b = np.ones_like(each_word_level_stroke_in)
|
169 |
+
b[:,:2] /= self.divider
|
170 |
+
|
171 |
+
if len(each_word_level_stroke_in) == len(each_word_level_term) and len(tmp) > 0 and len(each_word_level_stroke_in) > 0:
|
172 |
+
user_word_level_stroke_in.append(np.asarray(each_word_level_stroke_in) * b)
|
173 |
+
user_word_level_stroke_out.append(np.asarray(each_word_level_stroke_out) * b)
|
174 |
+
user_word_level_stroke_length.append(len(each_word_level_stroke_in))
|
175 |
+
user_word_level_char.append(np.asarray(tmp))
|
176 |
+
user_word_level_term.append(np.asarray(each_word_level_term))
|
177 |
+
user_word_level_char_length.append(len(tmp))
|
178 |
+
|
179 |
+
segment_level_stroke_in_list = []
|
180 |
+
segment_level_stroke_out_list = []
|
181 |
+
segment_level_stroke_length_list = []
|
182 |
+
segment_level_char_list = []
|
183 |
+
segment_level_term_list = []
|
184 |
+
segment_level_char_length_list = []
|
185 |
+
|
186 |
+
for sid in range(len(segment_level_stroke_in[wid])):
|
187 |
+
each_segment_level_stroke_in = segment_level_stroke_in[wid][sid]
|
188 |
+
each_segment_level_stroke_out = segment_level_stroke_out[wid][sid]
|
189 |
+
|
190 |
+
if self.datadir == './data/DW_writers':
|
191 |
+
each_segment_level_term = segment_level_term[wid][sid][1:]
|
192 |
+
each_segment_level_char = segment_level_char[wid][sid][1:]
|
193 |
+
elif self.datadir == './data/VALID_DW_writers':
|
194 |
+
each_segment_level_term = segment_level_term[wid][sid][1:]
|
195 |
+
each_segment_level_char = segment_level_char[wid][sid][1:]
|
196 |
+
else:
|
197 |
+
each_segment_level_term = segment_level_term[wid][sid]
|
198 |
+
each_segment_level_char = segment_level_char[wid][sid]
|
199 |
+
|
200 |
+
while True:
|
201 |
+
if len(each_segment_level_term) == 0:
|
202 |
+
break
|
203 |
+
if each_segment_level_term[-1] != 1.0:
|
204 |
+
# each_segment_level_raw_stroke = each_segment_level_raw_stroke[:-1]
|
205 |
+
each_segment_level_char = each_segment_level_char[:-1]
|
206 |
+
each_segment_level_term = each_segment_level_term[:-1]
|
207 |
+
each_segment_level_stroke_in = each_segment_level_stroke_in[:-1]
|
208 |
+
each_segment_level_stroke_out = each_segment_level_stroke_out[:-1]
|
209 |
+
else:
|
210 |
+
break
|
211 |
+
|
212 |
+
tmp = []
|
213 |
+
for i, t in enumerate(each_segment_level_term):
|
214 |
+
if t == 1:
|
215 |
+
tmp.append(each_segment_level_char[i])
|
216 |
+
|
217 |
+
c = np.ones_like(each_segment_level_stroke_in)
|
218 |
+
c[:,:2] /= self.divider
|
219 |
+
|
220 |
+
if len(each_segment_level_stroke_in) == len(each_segment_level_term) and len(tmp) > 0 and len(each_segment_level_stroke_in) > 0:
|
221 |
+
segment_level_stroke_in_list.append(np.asarray(each_segment_level_stroke_in) * c)
|
222 |
+
segment_level_stroke_out_list.append(np.asarray(each_segment_level_stroke_out) * c)
|
223 |
+
segment_level_stroke_length_list.append(len(each_segment_level_stroke_in))
|
224 |
+
segment_level_char_list.append(np.asarray(tmp))
|
225 |
+
segment_level_term_list.append(np.asarray(each_segment_level_term))
|
226 |
+
segment_level_char_length_list.append(len(tmp))
|
227 |
+
|
228 |
+
if len(segment_level_stroke_length_list) > 0:
|
229 |
+
SEGMENT_MAX_STROKE_LENGTH = np.max(segment_level_stroke_length_list)
|
230 |
+
SEGMENT_MAX_CHARACTER_LENGTH = np.max(segment_level_char_length_list)
|
231 |
+
|
232 |
+
new_segment_level_stroke_in_list = np.asarray([np.pad(a, ((0, SEGMENT_MAX_STROKE_LENGTH-len(a)), (0, 0)), 'constant') for a in segment_level_stroke_in_list])
|
233 |
+
new_segment_level_stroke_out_list = np.asarray([np.pad(a, ((0, SEGMENT_MAX_STROKE_LENGTH-len(a)), (0, 0)), 'constant') for a in segment_level_stroke_out_list])
|
234 |
+
new_segment_level_term_list = np.asarray([np.pad(a, ((0, SEGMENT_MAX_STROKE_LENGTH-len(a))), 'constant') for a in segment_level_term_list])
|
235 |
+
new_segment_level_char_list = np.asarray([np.pad(a, ((0, SEGMENT_MAX_CHARACTER_LENGTH-len(a))), 'constant') for a in segment_level_char_list])
|
236 |
+
|
237 |
+
user_segment_level_stroke_in.append(new_segment_level_stroke_in_list)
|
238 |
+
user_segment_level_stroke_out.append(new_segment_level_stroke_out_list)
|
239 |
+
user_segment_level_stroke_length.append(segment_level_stroke_length_list)
|
240 |
+
user_segment_level_char.append(new_segment_level_char_list)
|
241 |
+
user_segment_level_term.append(new_segment_level_term_list)
|
242 |
+
user_segment_level_char_length.append(segment_level_char_length_list)
|
243 |
+
|
244 |
+
WORD_MAX_STROKE_LENGTH = np.max(user_word_level_stroke_length)
|
245 |
+
WORD_MAX_CHARACTER_LENGTH = np.max(user_word_level_char_length)
|
246 |
+
|
247 |
+
SENTENCE_MAX_STROKE_LENGTH = np.max(user_sentence_level_stroke_length)
|
248 |
+
SENTENCE_MAX_CHARACTER_LENGTH = np.max(user_sentence_level_char_length)
|
249 |
+
|
250 |
+
new_sentence_level_stroke_in = np.asarray([np.pad(a, ((0, SENTENCE_MAX_STROKE_LENGTH-len(a)), (0,0)), 'constant') for a in user_sentence_level_stroke_in])
|
251 |
+
new_sentence_level_stroke_out = np.asarray([np.pad(a, ((0, SENTENCE_MAX_STROKE_LENGTH-len(a)), (0,0)), 'constant') for a in user_sentence_level_stroke_out])
|
252 |
+
new_sentence_level_term = np.asarray([np.pad(a, ((0, SENTENCE_MAX_STROKE_LENGTH-len(a))), 'constant') for a in user_sentence_level_term])
|
253 |
+
new_sentence_level_char = np.asarray([np.pad(a, ((0, SENTENCE_MAX_CHARACTER_LENGTH-len(a))), 'constant') for a in user_sentence_level_char])
|
254 |
+
new_word_level_stroke_in = np.asarray([np.pad(a, ((0, WORD_MAX_STROKE_LENGTH-len(a)), (0,0)), 'constant') for a in user_word_level_stroke_in])
|
255 |
+
new_word_level_stroke_out = np.asarray([np.pad(a, ((0, WORD_MAX_STROKE_LENGTH-len(a)), (0,0)), 'constant') for a in user_word_level_stroke_out])
|
256 |
+
new_word_level_term = np.asarray([np.pad(a, ((0, WORD_MAX_STROKE_LENGTH-len(a))), 'constant') for a in user_word_level_term])
|
257 |
+
new_word_level_char = np.asarray([np.pad(a, ((0, WORD_MAX_CHARACTER_LENGTH-len(a))), 'constant') for a in user_word_level_char])
|
258 |
+
|
259 |
+
all_sentence_level_stroke_in.append(new_sentence_level_stroke_in)
|
260 |
+
all_sentence_level_stroke_out.append(new_sentence_level_stroke_out)
|
261 |
+
all_sentence_level_stroke_length.append(user_sentence_level_stroke_length)
|
262 |
+
all_sentence_level_term.append(new_sentence_level_term)
|
263 |
+
all_sentence_level_char.append(new_sentence_level_char)
|
264 |
+
all_sentence_level_char_length.append(user_sentence_level_char_length)
|
265 |
+
all_word_level_stroke_in.append(new_word_level_stroke_in)
|
266 |
+
all_word_level_stroke_out.append(new_word_level_stroke_out)
|
267 |
+
all_word_level_stroke_length.append(user_word_level_stroke_length)
|
268 |
+
all_word_level_term.append(new_word_level_term)
|
269 |
+
all_word_level_char.append(new_word_level_char)
|
270 |
+
all_word_level_char_length.append(user_word_level_char_length)
|
271 |
+
all_segment_level_stroke_in.append(user_segment_level_stroke_in)
|
272 |
+
all_segment_level_stroke_out.append(user_segment_level_stroke_out)
|
273 |
+
all_segment_level_stroke_length.append(user_segment_level_stroke_length)
|
274 |
+
all_segment_level_term.append(user_segment_level_term)
|
275 |
+
all_segment_level_char.append(user_segment_level_char)
|
276 |
+
all_segment_level_char_length.append(user_segment_level_char_length)
|
277 |
+
|
278 |
+
return [all_sentence_level_stroke_in, all_sentence_level_stroke_out, all_sentence_level_stroke_length, all_sentence_level_term, all_sentence_level_char, all_sentence_level_char_length, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out, all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length]
|
SynthesisNetwork.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
from helper import *
|
5 |
+
from config.GlobalVariables import *
|
6 |
+
from SynthesisNetwork import SynthesisNetwork
|
7 |
+
from DataLoader import DataLoader
|
8 |
+
import convenience
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
#@title Demo
|
12 |
+
device = 'cpu'
|
13 |
+
num_samples = 10
|
14 |
+
|
15 |
+
net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
|
16 |
+
|
17 |
+
if not torch.cuda.is_available():
|
18 |
+
try: # retrained model also contains loss in dict
|
19 |
+
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
|
20 |
+
except:
|
21 |
+
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device)))
|
22 |
+
|
23 |
+
|
24 |
+
dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
|
25 |
+
|
26 |
+
|
27 |
+
writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
|
28 |
+
all_loaded_data = []
|
29 |
+
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
|
30 |
+
avail_char_list = avail_char.split(" ")
|
31 |
+
for writer_id in [120, 80]:
|
32 |
+
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
|
33 |
+
all_loaded_data.append(loaded_data)
|
34 |
+
|
35 |
+
default_loaded_data = all_loaded_data[-1]
|
36 |
+
# for writer interpolation
|
37 |
+
def interpolate_writers(target_word, weight):
|
38 |
+
image = convenience.sample_blended_writers([1 - weight, weight], target_word, net, all_loaded_data, device).convert("RGB")
|
39 |
+
return image
|
40 |
+
|
41 |
+
def choose_blend_writers(writer1, writer2):
|
42 |
+
id1, id2 = int(writer1.split(" ")[1]), int(writer1.split(" ")[1])
|
43 |
+
all_loaded_data.clear()
|
44 |
+
for writer_id in [id1, id2]:
|
45 |
+
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
|
46 |
+
all_loaded_data.append(loaded_data)
|
47 |
+
|
48 |
+
return gr.Slider.update(label=f"{writer1} vs. {writer2}")
|
49 |
+
'''
|
50 |
+
def choose_writer(writ, c1, c2, c3, c4, val):
|
51 |
+
all_loaded_data.clear()
|
52 |
+
w = int(writ.split(" ")[1])
|
53 |
+
loaded_data = dl.next_batch(TYPE='TRAIN', uid=w, tids=list(range(num_samples)))
|
54 |
+
all_loaded_data.append(loaded_data)
|
55 |
+
return char_grid(c1, c2, c3, c4, val)
|
56 |
+
'''
|
57 |
+
# for character grrid
|
58 |
+
def choose_grid_chars(c1, c2, c3, c4):
|
59 |
+
return gr.Button.update(value=f"Blend {c1}, {c2}, {c3}, and {c4}!")
|
60 |
+
|
61 |
+
def char_grid(c1, c2, c3, c4):
|
62 |
+
image = convenience.sample_character_grid([c1, c2, c3, c4], 5, net, [default_loaded_data], device).convert("RGB")
|
63 |
+
return image
|
64 |
+
|
65 |
+
# for character blend
|
66 |
+
def interpolate_chars(c1, c2, weight):
|
67 |
+
image = convenience.sample_blended_chars([1 - weight, weight], [c1, c2], net, [default_loaded_data], device).convert("RGB")
|
68 |
+
return image
|
69 |
+
|
70 |
+
def choose_blend_chars(c1, c2):
|
71 |
+
return gr.Slider.update(label=f"'{c1}' vs. '{c2}'")
|
72 |
+
|
73 |
+
# for MDN
|
74 |
+
def mdn_sample(word, maxs, maxr):
|
75 |
+
image = convenience.mdn_single_sample(word, maxs, maxr, net, [default_loaded_data], device).convert("RGB")
|
76 |
+
return image
|
77 |
+
"""
|
78 |
+
def char_vid(word):
|
79 |
+
#make word list
|
80 |
+
convenience.char_interpolation_video(word_list, 10, net, [default_loaded_data], device).convert('RGB')
|
81 |
+
vid_path = f"/content/drive/MyDrive/Colab Notebooks/Spring22/decoupled-style-descriptors-eb/results/abcdefg_video.mov"
|
82 |
+
return gr.Video.update(value=vid_path)
|
83 |
+
"""
|
84 |
+
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
with gr.Tabs():
|
87 |
+
with gr.TabItem("Blend Writers"):
|
88 |
+
target_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
|
89 |
+
with gr.Row():
|
90 |
+
left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
|
91 |
+
right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
|
92 |
+
with gr.Column():
|
93 |
+
writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
|
94 |
+
with gr.Column():
|
95 |
+
writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
|
96 |
+
with gr.Row():
|
97 |
+
writer_slider = gr.Slider(0, 1, value=0.3, label="Style 120 vs. Style 80")
|
98 |
+
with gr.Row():
|
99 |
+
writer_submit = gr.Button("Submit")
|
100 |
+
with gr.Row():
|
101 |
+
writer_default_image = convenience.sample_blended_writers([0.7, 0.3], "hello world", net, all_loaded_data, device).convert("RGB")
|
102 |
+
writer_output = gr.Image(writer_default_image)
|
103 |
+
|
104 |
+
writer_submit.click(fn=interpolate_writers, inputs=[target_word, writer_slider], outputs=[writer_output])
|
105 |
+
writer_slider.change(fn=interpolate_writers, inputs=[target_word, writer_slider], outputs=[writer_output])
|
106 |
+
target_word.submit(fn=interpolate_writers, inputs=[target_word, writer_slider], outputs=[writer_output])
|
107 |
+
|
108 |
+
writer1.change(fn=choose_blend_writers, inputs=[writer1, writer2], outputs=[writer_slider])
|
109 |
+
writer2.change(fn=choose_blend_writers, inputs=[writer1, writer2], outputs=[writer_slider])
|
110 |
+
|
111 |
+
|
112 |
+
with gr.TabItem("Blend Characters"):
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column():
|
115 |
+
char1 = gr.Dropdown(choices=avail_char_list, value="y", label="Character 1")
|
116 |
+
with gr.Column():
|
117 |
+
char2 = gr.Dropdown(choices=avail_char_list, value="s", label="Character 2")
|
118 |
+
with gr.Row():
|
119 |
+
char_slider = gr.Slider(0, 1, value=0.3, label="'y' vs. 's'")
|
120 |
+
with gr.Row():
|
121 |
+
char_default_image = convenience.sample_blended_chars([0.7, 0.3], ["y", "s"], net, [default_loaded_data], device).convert("RGB")
|
122 |
+
char_output = gr.Image(char_default_image)
|
123 |
+
|
124 |
+
char_slider.change(fn=interpolate_chars, inputs=[char1, char2, char_slider], outputs=[char_output])
|
125 |
+
|
126 |
+
char1.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
|
127 |
+
char2.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
|
128 |
+
|
129 |
+
"""
|
130 |
+
with gr.TabItem("Character Grid"): #slow
|
131 |
+
with gr.Row():
|
132 |
+
with gr.Column():
|
133 |
+
char1 = gr.Dropdown(choices=avail_char_list, value="y", label="Character 1")
|
134 |
+
with gr.Column():
|
135 |
+
char2 = gr.Dropdown(choices=avail_char_list, value="s", label="Character 2")
|
136 |
+
with gr.Column():
|
137 |
+
char3 = gr.Dropdown(choices=avail_char_list, value="u", label="Character 3")
|
138 |
+
with gr.Column():
|
139 |
+
char4 = gr.Dropdown(choices=avail_char_list, value="n", label="Character 4")
|
140 |
+
with gr.Row():
|
141 |
+
submit_button = gr.Button(value="Blend y, s, u, and n!")
|
142 |
+
'''
|
143 |
+
with gr.Row():
|
144 |
+
radio_options2 = ["Writer " + str(n) for n in writer_options]
|
145 |
+
writer = gr.Radio(radio_options2, value="Writer 80", label="Style for Writer")
|
146 |
+
writer.change(fn=choose_writer, inputs=[writer, char1, char2, char3, char4, slider2], outputs=[output])
|
147 |
+
'''
|
148 |
+
#slider2 = gr.Slider(2, 20, value=10, label="Grid Size", step=1)
|
149 |
+
|
150 |
+
default_image = convenience.sample_character_grid(['y', 's', 'u', 'n'], 10, net, [default_loaded_data], device).convert("RGB")
|
151 |
+
output = gr.Image(default_image)
|
152 |
+
|
153 |
+
char1.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
|
154 |
+
char2.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
|
155 |
+
char3.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
|
156 |
+
char4.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
|
157 |
+
|
158 |
+
|
159 |
+
#slider2.change(fn=char_grid, inputs=[char1, char2, char3, char4, slider2], outputs=[output])
|
160 |
+
submit_button.click(fn=char_grid, inputs=[char1, char2, char3, char4], outputs=[output])
|
161 |
+
"""
|
162 |
+
|
163 |
+
with gr.TabItem("Add Randomness"):
|
164 |
+
mdn_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
|
165 |
+
'''
|
166 |
+
with gr.Row():
|
167 |
+
radio_options3 = ["Writer " + str(n) for n in writer_options]
|
168 |
+
writer = gr.Radio(radio_options3, value="Writer 80", label="Style for Writer")
|
169 |
+
writer.change(fn=new_writer_mdn, inputs=[writer, slider3, slider4], outputs=[output])
|
170 |
+
'''
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
max_rand = gr.Slider(0, 1, value=1, label="Maximum Randomness")
|
174 |
+
with gr.Column():
|
175 |
+
scale_rand = gr.Slider(0, 3, value=0.5, label="Scale of Randomness")
|
176 |
+
with gr.Row():
|
177 |
+
sample_button = gr.Button(value="Resample!")
|
178 |
+
with gr.Row():
|
179 |
+
default_im = convenience.mdn_single_sample("hello world", 0.5, 1, net, [default_loaded_data], device).convert('RGB')
|
180 |
+
mdn_output = gr.Image(default_im)
|
181 |
+
|
182 |
+
max_rand.change(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])
|
183 |
+
scale_rand.change(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])
|
184 |
+
sample_button.click(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])
|
185 |
+
mdn_word.submit(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])
|
186 |
+
|
187 |
+
demo.launch()
|
config/GlobalVariables.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
COLORS = [(255,255,255), (255,0,0), (0,255,0), (0,0,255), (255,255,0),(0,255,255),(255,0,255),(255,128,0),(0,255,128),(128,0,255),(255,0,128),(128,255,0),(0,128,255)]
|
2 |
+
CHARACTERS = ' !"#$%&\'()*+,-./0123456789:;<=>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[]abcdefghijklmnopqrstuvwxyz'
|
3 |
+
# CHARACTERS = ' !"&\'(),-.:;?ABCDEFGHIJKLMNOPQRSTUVWXYZ[]abcdefghijklmnopqrstuvwxyz'
|
4 |
+
|
5 |
+
''.join([CHARACTERS[i] for i in [4,2,30]])
|
config/__init__.py
ADDED
File without changes
|
config/__pycache__/GlobalVariables.cpython-38.pyc
ADDED
Binary file (771 Bytes). View file
|
|
config/__pycache__/GlobalVariables.cpython-39.pyc
ADDED
Binary file (747 Bytes). View file
|
|
config/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (239 Bytes). View file
|
|
config/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (239 Bytes). View file
|
|
convenience.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from random import random
|
5 |
+
import torch
|
6 |
+
import pickle
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from helper import *
|
10 |
+
from PIL import Image
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
from config.GlobalVariables import *
|
14 |
+
from tensorboardX import SummaryWriter
|
15 |
+
from SynthesisNetwork import SynthesisNetwork
|
16 |
+
from DataLoader import DataLoader
|
17 |
+
# import ffmpeg # for problems with ffmpeg uninstall ffmpeg and then install ffmpeg-python
|
18 |
+
|
19 |
+
L = 256
|
20 |
+
|
21 |
+
def get_mean_global_W(net, loaded_data, device):
|
22 |
+
"""gets the mean global style vector for a given writer"""
|
23 |
+
[_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
|
24 |
+
all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = loaded_data
|
25 |
+
|
26 |
+
batch_word_level_stroke_in = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_in]
|
27 |
+
batch_word_level_stroke_out = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_out]
|
28 |
+
batch_word_level_stroke_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_stroke_length]
|
29 |
+
batch_word_level_term = [torch.FloatTensor(a).to(device) for a in all_word_level_term]
|
30 |
+
batch_word_level_char = [torch.LongTensor(a).to(device) for a in all_word_level_char]
|
31 |
+
batch_word_level_char_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_char_length]
|
32 |
+
batch_segment_level_stroke_in = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_in]
|
33 |
+
batch_segment_level_stroke_out = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_out]
|
34 |
+
batch_segment_level_stroke_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_stroke_length]
|
35 |
+
batch_segment_level_term = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_term]
|
36 |
+
batch_segment_level_char = [[torch.LongTensor(a).to(device) for a in b] for b in all_segment_level_char]
|
37 |
+
batch_segment_level_char_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_char_length]
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
word_inf_state_out = net.inf_state_fc1(batch_word_level_stroke_out[0])
|
41 |
+
word_inf_state_out = net.inf_state_relu(word_inf_state_out)
|
42 |
+
word_inf_state_out, _ = net.inf_state_lstm(word_inf_state_out)
|
43 |
+
|
44 |
+
user_word_level_char = batch_word_level_char[0]
|
45 |
+
user_word_level_term = batch_word_level_term[0]
|
46 |
+
|
47 |
+
original_Wc = []
|
48 |
+
word_batch_id = 0
|
49 |
+
|
50 |
+
curr_seq_len = batch_word_level_stroke_length[0][word_batch_id][0]
|
51 |
+
curr_char_len = batch_word_level_char_length[0][word_batch_id][0]
|
52 |
+
|
53 |
+
char_vector = torch.eye(len(CHARACTERS))[user_word_level_char[word_batch_id][:curr_char_len]].to(device)
|
54 |
+
current_term = user_word_level_term[word_batch_id][:curr_seq_len].unsqueeze(-1)
|
55 |
+
split_ids = torch.nonzero(current_term)[:, 0]
|
56 |
+
|
57 |
+
char_vector_1 = net.char_vec_fc_1(char_vector)
|
58 |
+
char_vector_1 = net.char_vec_relu_1(char_vector_1)
|
59 |
+
|
60 |
+
char_out_1 = char_vector_1.unsqueeze(0)
|
61 |
+
char_out_1, (c, h) = net.char_lstm_1(char_out_1)
|
62 |
+
char_out_1 = char_out_1.squeeze(0)
|
63 |
+
char_out_1 = net.char_vec_fc2_1(char_out_1)
|
64 |
+
char_matrix_1 = char_out_1.view([-1, 1, 256, 256])
|
65 |
+
char_matrix_1 = char_matrix_1.squeeze(1)
|
66 |
+
char_matrix_inv_1 = torch.inverse(char_matrix_1)
|
67 |
+
|
68 |
+
W_c_t = word_inf_state_out[word_batch_id][:curr_seq_len]
|
69 |
+
W_c = torch.stack([W_c_t[i] for i in split_ids])
|
70 |
+
original_Wc.append(W_c)
|
71 |
+
|
72 |
+
W = torch.bmm(char_matrix_inv_1, W_c.unsqueeze(2)).squeeze(-1)
|
73 |
+
mean_global_W = torch.mean(W, 0)
|
74 |
+
return mean_global_W
|
75 |
+
|
76 |
+
|
77 |
+
def get_DSD(net, target_word, writer_mean_Ws, all_loaded_data, device):
|
78 |
+
"""
|
79 |
+
returns a style vector and character matrix for each character/segment in target_word
|
80 |
+
|
81 |
+
n is the number of writers
|
82 |
+
M is the number of characters in the target word
|
83 |
+
L is the latent vector size (in this case 256)
|
84 |
+
|
85 |
+
input:
|
86 |
+
- target_word, a string of length M to be converted to a DSD
|
87 |
+
- writer_mean_Ws, a list of n style vectors of size L
|
88 |
+
|
89 |
+
output:
|
90 |
+
- all_writer_Ws, a tensor of size n x M x L representing the style vectors for each writer and character
|
91 |
+
- all_writer_Cs, a tensor of size n x M x L x L representing the corresponding character matrix
|
92 |
+
"""
|
93 |
+
|
94 |
+
n = len(all_loaded_data)
|
95 |
+
M = len(target_word)
|
96 |
+
all_writer_Ws = torch.zeros(n, M, L)
|
97 |
+
all_writer_Cs = torch.zeros(n, M, L, L)
|
98 |
+
|
99 |
+
for i in range(n):
|
100 |
+
np.random.seed(0)
|
101 |
+
|
102 |
+
[_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
|
103 |
+
all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = all_loaded_data[i]
|
104 |
+
|
105 |
+
available_segments = {}
|
106 |
+
for sid, sentence in enumerate(all_segment_level_char[0]):
|
107 |
+
for wid, word in enumerate(sentence):
|
108 |
+
segment = ''.join([CHARACTERS[i] for i in word])
|
109 |
+
split_ids = np.asarray(np.nonzero(all_segment_level_term[0][sid][wid]))
|
110 |
+
|
111 |
+
if segment in available_segments:
|
112 |
+
available_segments[segment].append([all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids])
|
113 |
+
else:
|
114 |
+
available_segments[segment] = [[all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids]]
|
115 |
+
|
116 |
+
index = 0
|
117 |
+
all_W = []
|
118 |
+
all_C = []
|
119 |
+
|
120 |
+
# while index <= len(target_word):
|
121 |
+
while index < len(target_word):
|
122 |
+
available = False
|
123 |
+
# Currently this just uses each character individually instead of the whole segment
|
124 |
+
# for end_index in range(len(target_word), index, -1):
|
125 |
+
# segment = target_word[index:end_index]
|
126 |
+
# print (segment)
|
127 |
+
segment = target_word[index]
|
128 |
+
if segment in available_segments: # method beta
|
129 |
+
# print(f'in dic - {segment}')
|
130 |
+
available = True
|
131 |
+
candidates = available_segments[segment]
|
132 |
+
segment_level_stroke_out, split_ids = candidates[np.random.randint(len(candidates))]
|
133 |
+
out = net.inf_state_fc1(torch.FloatTensor(segment_level_stroke_out).to(device).unsqueeze(0))
|
134 |
+
out = net.inf_state_relu(out)
|
135 |
+
seg_W_c, (h_n, _) = net.inf_state_lstm(out)
|
136 |
+
|
137 |
+
character = segment[0] # take the first character of the segment?
|
138 |
+
|
139 |
+
# get character matrix using same method as method beta
|
140 |
+
char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
|
141 |
+
out = net.char_vec_fc_1(char_vector)
|
142 |
+
out = net.char_vec_relu_1(out)
|
143 |
+
out, _ = net.char_lstm_1(out.unsqueeze(0))
|
144 |
+
out = out.squeeze(0)
|
145 |
+
out = net.char_vec_fc2_1(out)
|
146 |
+
char_matrix = out.view([-1, 256, 256])
|
147 |
+
inv_char_matrix = char_matrix.inverse()
|
148 |
+
|
149 |
+
id = split_ids[0][0]
|
150 |
+
W_c_vector = seg_W_c[0, id].squeeze()
|
151 |
+
|
152 |
+
# invert to get writer-independed DSD
|
153 |
+
W_vector = torch.bmm(inv_char_matrix, W_c_vector.repeat(inv_char_matrix.size(0), 1).unsqueeze(2))
|
154 |
+
all_W.append(W_vector)
|
155 |
+
all_C.append(char_matrix)
|
156 |
+
|
157 |
+
index += 1
|
158 |
+
|
159 |
+
if index == len(target_word):
|
160 |
+
break
|
161 |
+
|
162 |
+
if not available: # method alpha
|
163 |
+
character = target_word[index]
|
164 |
+
# print(f'no dic - {character}')
|
165 |
+
char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
|
166 |
+
out = net.char_vec_fc_1(char_vector)
|
167 |
+
out = net.char_vec_relu_1(out)
|
168 |
+
out, _ = net.char_lstm_1(out.unsqueeze(0))
|
169 |
+
out = out.squeeze(0)
|
170 |
+
out = net.char_vec_fc2_1(out)
|
171 |
+
char_matrix = out.view([-1, 256, 256])
|
172 |
+
|
173 |
+
W_vector = writer_mean_Ws[i].repeat(char_matrix.size(0), 1).unsqueeze(2)
|
174 |
+
|
175 |
+
# all_W.append([W_vector])
|
176 |
+
all_W.append(W_vector)
|
177 |
+
all_C.append(char_matrix)
|
178 |
+
|
179 |
+
index += 1
|
180 |
+
|
181 |
+
all_writer_Ws[i, :, :] = torch.stack(all_W).squeeze()
|
182 |
+
all_writer_Cs[i, :, :, :] = torch.stack(all_C).squeeze()
|
183 |
+
|
184 |
+
return all_writer_Ws, all_writer_Cs
|
185 |
+
|
186 |
+
|
187 |
+
def get_writer_blend_W_c(writer_weights, all_Ws, all_Cs):
|
188 |
+
"""
|
189 |
+
generates character-dependent style-dependent DSDs for each character/segement in target_word,
|
190 |
+
averaging together the styles of the handwritings using provided weights
|
191 |
+
|
192 |
+
n is the number of writers
|
193 |
+
M is the number of characters in the target word
|
194 |
+
L is the latent vector size (in this case 256)
|
195 |
+
|
196 |
+
input:
|
197 |
+
- writer_weights, a list of length n weights for each writer that sum to one
|
198 |
+
- all_writer_Ws, an n x M x L tensor representing each weiter's style vector for every character
|
199 |
+
- all_writer_Cs, an n x M x L x L tensor representing the style's correspodning character matrix
|
200 |
+
|
201 |
+
output:
|
202 |
+
- an M x 1 x L tensor of M scharacter-dependent style-dependent DSDs
|
203 |
+
"""
|
204 |
+
n, M, _ = all_Ws.shape
|
205 |
+
weights_tensor = torch.tensor(writer_weights).repeat_interleave(M * L).reshape(n, M, L) # repeat accross remaining dimensions
|
206 |
+
W_vectors = (weights_tensor * all_Ws).sum(axis=0).unsqueeze(-1) # take weighted sum accross writers axis
|
207 |
+
char_matrices = all_Cs[0, :, :, :] # character matrices are independent of writer
|
208 |
+
|
209 |
+
W_cs = torch.bmm(char_matrices, W_vectors)
|
210 |
+
|
211 |
+
return W_cs.reshape(M, 1, L)
|
212 |
+
|
213 |
+
|
214 |
+
def get_character_blend_W_c(character_weights, all_Ws, all_Cs):
|
215 |
+
"""
|
216 |
+
generates a single character-dependent style-dependent DSD,
|
217 |
+
averaging together the characters using provided weights
|
218 |
+
|
219 |
+
M is the number of characters to blend
|
220 |
+
L is the latent vector size (in this case 256)
|
221 |
+
|
222 |
+
input:
|
223 |
+
- character_weights, a list of length M weights for each character that sum to one
|
224 |
+
- all_Ws, a 1 x M x L tensor representing the wwiter's style vector for each character
|
225 |
+
- all_Cs, 1 x M x L x L tensor representing the style's correspodning character matrix
|
226 |
+
|
227 |
+
output:
|
228 |
+
- a 1 x 1 x L tensor representing the character-dependent style-dependent DSDs
|
229 |
+
"""
|
230 |
+
M = len(character_weights)
|
231 |
+
W_vector = all_Ws[0, 0, :].unsqueeze(-1)
|
232 |
+
|
233 |
+
weights_tensor = torch.tensor(character_weights).repeat_interleave(L * L).reshape(1, M, L, L) # repeat accross remaining dimensions
|
234 |
+
char_matrix = (weights_tensor * all_Cs).sum(axis=1).squeeze() # take weighted sum accross characters axis
|
235 |
+
|
236 |
+
W_c = char_matrix @ W_vector
|
237 |
+
|
238 |
+
return W_c.reshape(1, 1, L)
|
239 |
+
|
240 |
+
|
241 |
+
def get_commands(net, target_word, all_W_c): # seems like target_word is only used for length
|
242 |
+
"""converts character-dependent style-dependent DSDs to a list of commands for drawing"""
|
243 |
+
all_commands = []
|
244 |
+
current_id = 0
|
245 |
+
while True:
|
246 |
+
word_Wc_rec_TYPE_D = []
|
247 |
+
TYPE_D_REF = []
|
248 |
+
cid = 0
|
249 |
+
for segment_batch_id in range(len(all_W_c)):
|
250 |
+
if len(TYPE_D_REF) == 0:
|
251 |
+
for each_segment_Wc in all_W_c[segment_batch_id]:
|
252 |
+
if cid >= current_id:
|
253 |
+
word_Wc_rec_TYPE_D.append(each_segment_Wc)
|
254 |
+
cid += 1
|
255 |
+
if len(word_Wc_rec_TYPE_D) > 0:
|
256 |
+
TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
|
257 |
+
else:
|
258 |
+
for each_segment_Wc in all_W_c[segment_batch_id]:
|
259 |
+
magic_inp = torch.cat([torch.stack(TYPE_D_REF, 0), each_segment_Wc.unsqueeze(0)], 0)
|
260 |
+
magic_inp = magic_inp.unsqueeze(0)
|
261 |
+
TYPE_D_out, (c, h) = net.magic_lstm(magic_inp)
|
262 |
+
TYPE_D_out = TYPE_D_out.squeeze(0)
|
263 |
+
word_Wc_rec_TYPE_D.append(TYPE_D_out[-1])
|
264 |
+
TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
|
265 |
+
WC_ = torch.stack(word_Wc_rec_TYPE_D)
|
266 |
+
tmp_commands, res = net.sample_from_w_fix(WC_)
|
267 |
+
current_id += res
|
268 |
+
if len(all_commands) == 0:
|
269 |
+
all_commands.append(tmp_commands)
|
270 |
+
else:
|
271 |
+
all_commands.append(tmp_commands[1:])
|
272 |
+
if res < 0 or current_id >= len(target_word):
|
273 |
+
break
|
274 |
+
|
275 |
+
commands = []
|
276 |
+
px, py = 0, 100
|
277 |
+
for coms in all_commands:
|
278 |
+
for i, [dx, dy, t] in enumerate(coms):
|
279 |
+
x = px + dx * 5
|
280 |
+
y = py + dy * 5
|
281 |
+
commands.append([x, y, t])
|
282 |
+
px, py = x, y
|
283 |
+
commands = np.asarray(commands)
|
284 |
+
commands[:, 0] -= np.min(commands[:, 0])
|
285 |
+
|
286 |
+
return commands
|
287 |
+
|
288 |
+
def mdn_video(target_word, num_samples, scale_sd, clamp_mdn, net, all_loaded_data, device):
|
289 |
+
'''
|
290 |
+
Method creating gif of mdn samples
|
291 |
+
num_samples: number of samples to be inputted
|
292 |
+
max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
|
293 |
+
'''
|
294 |
+
words = target_word.split(' ')
|
295 |
+
us_target_word = re.sub(r"\s+", '_', target_word)
|
296 |
+
os.makedirs(f"./results/{us_target_word}_mdn_samples", exist_ok=True)
|
297 |
+
for i in range(num_samples):
|
298 |
+
im = Image.fromarray(np.zeros([160, 750]))
|
299 |
+
dr = ImageDraw.Draw(im)
|
300 |
+
width = 50
|
301 |
+
|
302 |
+
net.scale_sd = scale_sd
|
303 |
+
net.clamp_mdn = clamp_mdn
|
304 |
+
|
305 |
+
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
|
306 |
+
|
307 |
+
for word in words:
|
308 |
+
writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
|
309 |
+
all_W_c = get_writer_blend_W_c([1], writer_Ws, writer_Cs)
|
310 |
+
all_commands = get_commands(net, word, all_W_c)
|
311 |
+
|
312 |
+
for [x, y, t] in all_commands:
|
313 |
+
if t == 0:
|
314 |
+
dr.line((px+width, py, x+width, y), 255, 1)
|
315 |
+
px, py = x, y
|
316 |
+
width += np.max(all_commands[:, 0]) + 25
|
317 |
+
|
318 |
+
im.convert("RGB").save(f'results/{us_target_word}_mdn_samples/sample_{i}.png')
|
319 |
+
# Convert fromes to video using ffmpeg
|
320 |
+
photos = ffmpeg.input(f'results/{us_target_word}_mdn_samples/sample_*.png', pattern_type='glob', framerate=10)
|
321 |
+
videos = photos.output(f'results/{us_target_word}_video.mov', vcodec="libx264", pix_fmt="yuv420p")
|
322 |
+
videos.run(overwrite_output=True)
|
323 |
+
|
324 |
+
def sample_blended_writers(writer_weights, target_sentence, net, all_loaded_data, device="cpu"):
|
325 |
+
"""Generates an image of handwritten text based on target_sentence"""
|
326 |
+
words = target_sentence.split(' ')
|
327 |
+
|
328 |
+
im = Image.fromarray(np.zeros([160, 750]))
|
329 |
+
dr = ImageDraw.Draw(im)
|
330 |
+
width = 50
|
331 |
+
|
332 |
+
writer_mean_Ws = []
|
333 |
+
for loaded_data in all_loaded_data:
|
334 |
+
mean_global_W = get_mean_global_W(net, loaded_data, device)
|
335 |
+
writer_mean_Ws.append(mean_global_W)
|
336 |
+
|
337 |
+
for word in words:
|
338 |
+
all_writer_Ws, all_writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
|
339 |
+
all_W_c = get_writer_blend_W_c(writer_weights, all_writer_Ws, all_writer_Cs)
|
340 |
+
all_commands = get_commands(net, word, all_W_c)
|
341 |
+
|
342 |
+
for [x, y, t] in all_commands:
|
343 |
+
if t == 0:
|
344 |
+
dr.line((px+width, py, x+width, y), 255, 1)
|
345 |
+
px, py = x, y
|
346 |
+
width += np.max(all_commands[:, 0]) + 25
|
347 |
+
|
348 |
+
return im
|
349 |
+
|
350 |
+
|
351 |
+
def sample_character_grid(letters, grid_size, net, all_loaded_data, device="cpu"):
|
352 |
+
"""Generates an image of handwritten text based on target_sentence"""
|
353 |
+
width = 60
|
354 |
+
im = Image.fromarray(np.zeros([(grid_size + 1) * width, (grid_size + 1) * width]))
|
355 |
+
dr = ImageDraw.Draw(im)
|
356 |
+
|
357 |
+
M = len(letters)
|
358 |
+
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
|
359 |
+
|
360 |
+
# all_Ws = torch.zeros(1, M, L)
|
361 |
+
all_Cs = torch.zeros(1, M, L, L)
|
362 |
+
for i in range(M): # get corners of grid
|
363 |
+
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
|
364 |
+
# all_Ws[:, i, :] = W_vector
|
365 |
+
all_Cs[:, i, :, :] = char_matrix
|
366 |
+
|
367 |
+
all_Ws = mean_global_W.reshape(1, 1, L)
|
368 |
+
|
369 |
+
for i in range(grid_size):
|
370 |
+
for j in range(grid_size):
|
371 |
+
wx = i / (grid_size - 1)
|
372 |
+
wy = j / (grid_size - 1)
|
373 |
+
|
374 |
+
character_weights = [(1 - wx) * (1 - wy), # top left is 1 at (0, 0)
|
375 |
+
wx * (1 - wy), # top right is 1 at (1, 0)
|
376 |
+
(1 - wx) * wy, # bottom left is 1 at (0, 1)
|
377 |
+
wx * wy] # bottom right is 1 at (1, 1)
|
378 |
+
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
|
379 |
+
all_commands = get_commands(net, letters[0], all_W_c)
|
380 |
+
|
381 |
+
offset_x = i * width
|
382 |
+
offset_y = j * width
|
383 |
+
|
384 |
+
for [x, y, t] in all_commands:
|
385 |
+
if t == 0:
|
386 |
+
dr.line((
|
387 |
+
px + offset_x + width/2,
|
388 |
+
py + offset_y - width/2, # letters are shifted down for some reason
|
389 |
+
x + offset_x + width/2,
|
390 |
+
y + offset_y - width/2), 255, 1)
|
391 |
+
px, py = x, y
|
392 |
+
|
393 |
+
return im
|
394 |
+
|
395 |
+
def writer_interpolation_video(target_sentence, transition_time, net, all_loaded_data, device="cpu"):
|
396 |
+
"""
|
397 |
+
Generates a video of interpolating between each provided writer
|
398 |
+
"""
|
399 |
+
|
400 |
+
n = len(all_loaded_data)
|
401 |
+
|
402 |
+
os.makedirs(f"./results/{target_sentence}_blend_frames", exist_ok=True)
|
403 |
+
|
404 |
+
words = target_sentence.split(' ')
|
405 |
+
|
406 |
+
writer_mean_Ws = []
|
407 |
+
for loaded_data in all_loaded_data:
|
408 |
+
mean_global_W = get_mean_global_W(net, loaded_data, device)
|
409 |
+
writer_mean_Ws.append(mean_global_W)
|
410 |
+
|
411 |
+
word_Ws = []
|
412 |
+
word_Cs = []
|
413 |
+
|
414 |
+
for word in words:
|
415 |
+
all_writer_Ws, all_writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
|
416 |
+
word_Ws.append(all_writer_Ws)
|
417 |
+
word_Cs.append(all_writer_Cs)
|
418 |
+
|
419 |
+
for i in range(n - 1):
|
420 |
+
for j in range(transition_time):
|
421 |
+
im = Image.fromarray(np.zeros([160, 750]))
|
422 |
+
dr = ImageDraw.Draw(im)
|
423 |
+
width = 50
|
424 |
+
|
425 |
+
completion = j/(transition_time)
|
426 |
+
|
427 |
+
individual_weights = [1 - completion, completion]
|
428 |
+
writer_weights = [0] * i + individual_weights + [0] * (n - 2 - i)
|
429 |
+
|
430 |
+
for k, word in enumerate(words):
|
431 |
+
all_writer_Ws, all_writer_Cs = word_Ws[k], word_Cs[k]
|
432 |
+
all_W_c = get_writer_blend_W_c(writer_weights, all_writer_Ws, all_writer_Cs)
|
433 |
+
all_commands = get_commands(net, word, all_W_c)
|
434 |
+
|
435 |
+
for [x, y, t] in all_commands:
|
436 |
+
if t == 0:
|
437 |
+
dr.line((px+width, py, x+width, y), 255, 1)
|
438 |
+
px, py = x, y
|
439 |
+
width += np.max(all_commands[:, 0]) + 25
|
440 |
+
|
441 |
+
im.convert("RGB").save(f"./results/{target_sentence}_blend_frames/frame_{str(i * transition_time + j).zfill(3)}.png")
|
442 |
+
|
443 |
+
# Convert fromes to video using ffmpeg
|
444 |
+
photos = ffmpeg.input(f"./results/{target_sentence}_blend_frames/frame_*.png", pattern_type='glob', framerate=10)
|
445 |
+
videos = photos.output(f"results/{target_sentence}_blend_video.mov", vcodec="libx264", pix_fmt="yuv420p")
|
446 |
+
videos.run(overwrite_output=True)
|
447 |
+
|
448 |
+
def mdn_single_sample(target_word, scale_sd, clamp_mdn, net, all_loaded_data, device):
|
449 |
+
'''
|
450 |
+
Method creating gif of mdn samples
|
451 |
+
num_samples: number of samples to be inputted
|
452 |
+
max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
|
453 |
+
'''
|
454 |
+
words = target_word.split(' ')
|
455 |
+
im = Image.fromarray(np.zeros([160, 750]))
|
456 |
+
dr = ImageDraw.Draw(im)
|
457 |
+
width = 50
|
458 |
+
|
459 |
+
net.scale_sd = scale_sd
|
460 |
+
net.clamp_mdn = clamp_mdn
|
461 |
+
|
462 |
+
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
|
463 |
+
|
464 |
+
for word in words:
|
465 |
+
writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
|
466 |
+
all_W_c = get_writer_blend_W_c([1], writer_Ws, writer_Cs)
|
467 |
+
all_commands = get_commands(net, word, all_W_c)
|
468 |
+
|
469 |
+
for [x, y, t] in all_commands:
|
470 |
+
if t == 0:
|
471 |
+
dr.line((px+width, py, x+width, y), 255, 1)
|
472 |
+
px, py = x, y
|
473 |
+
width += np.max(all_commands[:, 0]) + 25
|
474 |
+
|
475 |
+
return im
|
476 |
+
|
477 |
+
def sample_blended_chars(character_weights, letters, net, all_loaded_data, device="cpu"):
|
478 |
+
"""Generates an image of handwritten text based on target_sentence"""
|
479 |
+
|
480 |
+
width = 60
|
481 |
+
im = Image.fromarray(np.zeros([100, 100]))
|
482 |
+
dr = ImageDraw.Draw(im)
|
483 |
+
|
484 |
+
M = len(letters)
|
485 |
+
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
|
486 |
+
|
487 |
+
all_Cs = torch.zeros(1, M, L, L)
|
488 |
+
for i in range(M): # get corners of grid
|
489 |
+
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
|
490 |
+
all_Cs[:, i, :, :] = char_matrix
|
491 |
+
|
492 |
+
all_Ws = mean_global_W.reshape(1, 1, L)
|
493 |
+
|
494 |
+
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
|
495 |
+
all_commands = get_commands(net, letters[0], all_W_c)
|
496 |
+
|
497 |
+
for [x, y, t] in all_commands:
|
498 |
+
if t == 0:
|
499 |
+
dr.line((
|
500 |
+
px + width/2,
|
501 |
+
py - width/2, # letters are shifted down for some reason
|
502 |
+
x + width/2,
|
503 |
+
y - width/2), 255, 1)
|
504 |
+
px, py = x, y
|
505 |
+
|
506 |
+
|
507 |
+
return im
|
508 |
+
|
509 |
+
|
510 |
+
def char_interpolation_video(letters, transition_time, net, all_loaded_data, device="cpu"):
|
511 |
+
"""Generates an image of handwritten text based on target_sentence"""
|
512 |
+
|
513 |
+
os.makedirs(f"./results/{''.join(letters)}_frames", exist_ok=True) # make a folder for the frames
|
514 |
+
|
515 |
+
width = 50
|
516 |
+
|
517 |
+
M = len(letters)
|
518 |
+
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
|
519 |
+
|
520 |
+
all_Cs = torch.zeros(1, M, L, L)
|
521 |
+
for i in range(M): # get corners of grid
|
522 |
+
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
|
523 |
+
all_Cs[:, i, :, :] = char_matrix
|
524 |
+
|
525 |
+
all_Ws = mean_global_W.reshape(1, 1, L)
|
526 |
+
|
527 |
+
for i in range(M - 1):
|
528 |
+
for j in range(transition_time):
|
529 |
+
completion = j / (transition_time - 1)
|
530 |
+
individual_weights = [1 - completion, completion]
|
531 |
+
character_weights = [0] * i + individual_weights + [0] * (M - 2 - i)
|
532 |
+
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
|
533 |
+
all_commands = get_commands(net, "change this later!", all_W_c)
|
534 |
+
|
535 |
+
im = Image.fromarray(np.zeros([100, 100]))
|
536 |
+
dr = ImageDraw.Draw(im)
|
537 |
+
|
538 |
+
for [x, y, t] in all_commands:
|
539 |
+
if t == 0:
|
540 |
+
dr.line((
|
541 |
+
px + width/2,
|
542 |
+
py - width/2, # letters are shifted down for some reason
|
543 |
+
x + width/2,
|
544 |
+
y - width/2), 255, 1)
|
545 |
+
px, py = x, y
|
546 |
+
|
547 |
+
|
548 |
+
im.convert("RGB").save(f"results/{''.join(letters)}_frames/frames_{str(i * transition_time + j).zfill(3)}.png")
|
549 |
+
|
550 |
+
# Convert fromes to video using ffmpeg
|
551 |
+
photos = ffmpeg.input(f"results/{''.join(letters)}_frames/frames_*.png", pattern_type='glob', framerate=24)
|
552 |
+
videos = photos.output(f"results/{''.join(letters)}_video.mov", vcodec="libx264", pix_fmt="yuv420p")
|
553 |
+
videos.run(overwrite_output=True)
|
554 |
+
|
555 |
+
|
data/writers/120/0.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:488e337dc15361658a8bab492c9e889daad1acca812d9a11fb8e369219fab6ef
|
3 |
+
size 175537
|
data/writers/120/1.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a04bde9644e378ebb2dab04306af81858b967a33f96685c3645cd37615880ebb
|
3 |
+
size 134815
|
data/writers/120/10.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20d95ba927366959e2f4b19bc0b932c3532930d3519a5003a357a46137785d39
|
3 |
+
size 134965
|
data/writers/120/100.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:351a2367d904833fbccec18a4a04d979e20493d7e5b0be5b46bdb0be5992dbf1
|
3 |
+
size 127588
|
data/writers/120/101.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c008de6c369b3b50cbf31f89b7ad7220164d8149ac4e9dd6e1b91017931a4d60
|
3 |
+
size 121980
|
data/writers/120/102.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4e4f83e793e38199a813bea019288d3f04433844384b21806745a9e5c51cfad
|
3 |
+
size 107769
|
data/writers/120/103.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a5626912691f52d426b2d2c37ad29194bb0bfc8cfeb5a42a9e16927bab7f79e
|
3 |
+
size 110661
|
data/writers/120/104.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff65734b3bd0e695e6944ec5a79e40bb00c1766fdc5fe1dc39300c8be38bd15b
|
3 |
+
size 108546
|
data/writers/120/105.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2b5c9a945f6efb3bef5fb0255a646aeafd41ea15ef75a2578f908392511897d
|
3 |
+
size 103809
|
data/writers/120/106.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:991b1db11a0514cff5134dc364790d3af3aaf22a9bdea170ee47b38801f4f684
|
3 |
+
size 108246
|
data/writers/120/107.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c863110c0a0d51d817afa6fbe55e18f4207e1b00a4960fc9f8d08cc351c38851
|
3 |
+
size 122094
|
data/writers/120/108.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:787de7d2534ec295ffd6df24b7cbed10dd84f433ce61e6aab0b9b9541404c0b0
|
3 |
+
size 134977
|
data/writers/120/109.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ed4d6be1fc96084d741f95ff21d62f822c411ef60baf327e48e8e512fafdb75
|
3 |
+
size 112104
|
data/writers/120/11.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:550bc976e80d45d669c9154d82a066629f92f39be40403e5c554e5f2b87231c7
|
3 |
+
size 125640
|
data/writers/120/110.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2204bedcd2e09d457c4641c4039ecc0bcc1913d29a5617e590baf773f6b4667c
|
3 |
+
size 104715
|
data/writers/120/111.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9b6a13f901029afafd7b587f0785ed0325f96ba89e2656467741a342aee233
|
3 |
+
size 103260
|
data/writers/120/112.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d65de4fc97401f4e65bb415d4357e42e6887e0e3ad03e62b73f7be428b8b80d
|
3 |
+
size 128293
|
data/writers/120/113.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe308240dd20d0d21692a669d10ec2c0022c03fd5db85b5c4a7fd7430bc3a0fb
|
3 |
+
size 127927
|
data/writers/120/114.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b677482a49f5de3cc6cc4e2e98bea3cb88bf9869ab16b16b235c35464984bd8
|
3 |
+
size 104076
|
data/writers/120/115.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a63b963d93d303bde992da6dce4ab97258eac80310172553ef035fd5f17114bc
|
3 |
+
size 91845
|
data/writers/120/116.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48c9f17dbdd9fcd9abcdccda4b96c465f5e3423b63f556a70a060c2e49d68f5f
|
3 |
+
size 144559
|
data/writers/120/117.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc36c22be7ba098958dbca1ee33d93b892d61162f2b15af232e819af8bb01dee
|
3 |
+
size 131440
|
data/writers/120/118.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94d26ef8069e4171db86239a571ea9238b257e29e7f45eaf931bf348109d674b
|
3 |
+
size 113775
|
data/writers/120/119.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844575ae6d80e7d99ee991f394efbf34e187fea4f07a37e65dc152360070af99
|
3 |
+
size 62214
|
data/writers/120/12.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da73c582d167dd1e643b5ac961458559bdb7bf8385c0a276865eac93e1708efb
|
3 |
+
size 153187
|
data/writers/120/120.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d07ff24e6a822dfe0da15678ec6fb39d3d569b615c9465494ab2d71f9dcb5618
|
3 |
+
size 144793
|
data/writers/120/121.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8614d0d5a91e2269af3ccfcf67e5fc3629dff45e66d7ce7b5f6c942ebc6c1dd
|
3 |
+
size 115830
|
data/writers/120/122.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dbcfdf6c3842aba365f0dd4188966d60b1d2b3686cf027efc22d0736ddc29ac
|
3 |
+
size 143827
|
data/writers/120/123.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df71728a9424a79b2570f8da50dd50470df861fdfb3f32165331b306ca09f57
|
3 |
+
size 92145
|
data/writers/120/124.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c976cf8a9d94a08acf260ab9602025fc058293b00c52c693d49ea4219fd28a9
|
3 |
+
size 125640
|
data/writers/120/125.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd843eb48e8563800945224760dedf90b9624c063182e09f8ad3767d448b7fb8
|
3 |
+
size 101817
|
data/writers/120/126.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7755adb199c440d99ffbcbfc248098d237de982c3f5f5a28a169fff430e94368
|
3 |
+
size 111777
|
data/writers/120/127.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1dcc75ca7e80fa07f1edfa6538322f92f90ac2d11265a4676be6e045a9db3f3
|
3 |
+
size 111771
|
data/writers/120/128.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43ebcd79b32266a6c9e307f590bee292f9b90aaa7552ef5b5b2dd9a857a58a43
|
3 |
+
size 133333
|
data/writers/120/129.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c663a98541bdda78554f5c2d83f07488cbfebb9cf9108261e5730375cf1d452
|
3 |
+
size 126411
|
data/writers/120/13.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808878ebe3eb40eef2d75f33db32cb4efd22cac468c15179ca69c92304c3e379
|
3 |
+
size 130951
|
data/writers/120/130.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe5aacdddcb712e6e540cec76628ad15ed16906b6452b9e08f9c41449f1df92f
|
3 |
+
size 145885
|
data/writers/120/131.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dd771d047b5a7787106286bbef893127f167e749d45a268e94607c699639079
|
3 |
+
size 106146
|
data/writers/120/132.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9075a3167827689141f85211d37f0989c6f0309240820c1924d6dfd2f059dd0
|
3 |
+
size 134359
|