import torch import argparse import numpy as np from helper import * from config.GlobalVariables import * from SynthesisNetwork import SynthesisNetwork from DataLoader import DataLoader import convenience import gradio as gr device = 'cpu' num_samples = 10 net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device) if not torch.cuda.is_available(): net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"]) dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers') writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151] all_loaded_data = [] chosen_writers = [120, 80] avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &" avail_char_list = avail_char.split(" ") for writer_id in chosen_writers: loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples))) all_loaded_data.append(loaded_data) default_loaded_data = all_loaded_data[-1] # data for writer interpolation writer_words = ["hello", "world"] writer_mean_Ws = [] all_word_writer_Ws = [] all_word_writer_Cs = [] writer_weight = 0.7 # data for char interpolation blend_chars = ["y", "s"] char_mean_global_W = None char_weight = 0.7 default_mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device) char_Ws = default_mean_global_W.reshape(1, 1, convenience.L) char_Cs = all_Cs = torch.zeros(1, 2, convenience.L, convenience.L) # data for MDN mdn_words = ["hello", "world"] mdn_mean_global_W = None all_word_mdn_Ws = [] all_word_mdn_Cs = [] def update_writer_word(target_word): writer_words.clear() for word in target_word.split(" "): writer_words.append(word) all_word_writer_Ws.clear() all_word_writer_Cs.clear() for word in writer_words: all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device) all_word_writer_Ws.append(all_writer_Ws) all_word_writer_Cs.append(all_writer_Cs) return update_writer_slider(writer_weight) # for writer interpolation def update_writer_slider(val): global writer_weight writer_weight = val weights = [1 - writer_weight, writer_weight] net.clamp_mdn = 0 im = convenience.draw_words(writer_words, all_word_writer_Ws, all_word_writer_Cs, weights, net) return im.convert("RGB") def update_chosen_writers(writer1, writer2): net.clamp_mdn = 0 chosen_writers[0], chosen_writers[1] = int(writer1.split(" ")[1]), int(writer2.split(" ")[1]) all_loaded_data.clear() for writer_id in chosen_writers: loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples))) all_loaded_data.append(loaded_data) writer_mean_Ws.clear() for loaded_data in all_loaded_data: mean_global_W = convenience.get_mean_global_W(net, loaded_data, device) writer_mean_Ws.append(mean_global_W) return gr.Slider.update(label=f"{writer1} vs. {writer2}"), update_writer_slider(writer_weight) # for character blend def update_char_slider(weight): """Generates an image of handwritten text based on target_sentence""" net.clamp_mdn = 0 global char_weight char_weight = weight character_weights = [1 - weight, weight] all_W_c = convenience.get_character_blend_W_c(character_weights, char_Ws, char_Cs) all_commands = convenience.get_commands(net, blend_chars[0], all_W_c) im = convenience.commands_to_image(all_commands, 160, 750, 375, 30) return im.convert("RGB") def update_blend_chars(c1, c2): global blend_chars blend_chars[0], blend_chars[1] = c1, c2 for i in range(2): # get corners of grid _, char_matrix = convenience.get_DSD(net, blend_chars[i], default_mean_global_W, [default_loaded_data], device) char_Cs[:, i, :, :] = char_matrix return gr.Slider.update(label=f"'{c1}' vs. '{c2}'") # for MDN def update_mdn_word(target_word): mdn_words.clear() for word in target_word.split(" "): mdn_words.append(word) all_word_mdn_Ws.clear() all_word_mdn_Cs.clear() for word in mdn_words: all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, default_mean_global_W, [default_loaded_data], device) all_word_mdn_Ws.append(all_writer_Ws) all_word_mdn_Cs.append(all_writer_Cs) return sample_mdn(net.scale_sd, net.clamp_mdn) def sample_mdn(maxs, maxr): net.clamp_mdn = maxr net.scale_sd = maxs im = convenience.draw_words(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net) return im.convert("RGB") update_writer_word(" ".join(writer_words)) update_chosen_writers(f"Writer {chosen_writers[0]}", f"Writer {chosen_writers[1]}") update_mdn_word(" ".join(writer_words)) update_blend_chars(*blend_chars) with gr.Blocks() as demo: with gr.Tabs(): with gr.TabItem("Blend Writers"): target_word = gr.Textbox(label="Target Word", value=" ".join(writer_words), max_lines=1) with gr.Row(): left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0] right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1] with gr.Column(): writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer") with gr.Column(): writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer") with gr.Row(): writer_slider = gr.Slider(0, 1, value=writer_weight, label="Style 120 vs. Style 80") with gr.Row(): writer_submit = gr.Button("Submit") with gr.Row(): writer_default_image = update_writer_slider(writer_weight) writer_output = gr.Image(writer_default_image) writer_submit.click(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output], show_progress=False) writer_slider.change(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output], show_progress=False) target_word.submit(fn=update_writer_word, inputs=[target_word], outputs=[writer_output], show_progress=False) writer1.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output], show_progress=False) writer2.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output], show_progress=False) with gr.TabItem("Blend Characters"): with gr.Row(): with gr.Column(): char1 = gr.Dropdown(choices=avail_char_list, value=blend_chars[0], label="Character 1") with gr.Column(): char2 = gr.Dropdown(choices=avail_char_list, value=blend_chars[1], label="Character 2") with gr.Row(): char_slider = gr.Slider(0, 1, value=char_weight, label=f"'{blend_chars[0]}' vs. '{blend_chars[1]}'") with gr.Row(): char_default_image = update_char_slider(char_weight) char_output = gr.Image(char_default_image) char_slider.change(fn=update_char_slider, inputs=[char_slider], outputs=[char_output], show_progress=False) char1.change(fn=update_blend_chars, inputs=[char1, char2], outputs=[char_slider], show_progress=False) char2.change(fn=update_blend_chars, inputs=[char1, char2], outputs=[char_slider], show_progress=False) with gr.TabItem("Add Randomness"): mdn_word = gr.Textbox(label="Target Word", value=" ".join(mdn_words), max_lines=1) with gr.Row(): with gr.Column(): max_rand = gr.Slider(0, 1, value=net.clamp_mdn, label="Maximum Randomness") with gr.Column(): scale_rand = gr.Slider(0, 3, value=net.scale_sd, label="Scale of Randomness") with gr.Row(): mdn_sample_button = gr.Button(value="Resample!") with gr.Row(): default_im = sample_mdn(net.scale_sd, net.clamp_mdn) mdn_output = gr.Image(default_im) max_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output], show_progress=False) scale_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output], show_progress=False) mdn_sample_button.click(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output], show_progress=False) mdn_word.submit(fn=update_mdn_word, inputs=[mdn_word], outputs=[mdn_output], show_progress=False) demo.launch()