Spaces:
Runtime error
Runtime error
File size: 2,349 Bytes
d0d5a73 1200764 87551e4 72f6b84 d0d5a73 8d609d2 d0d5a73 d84e31b d0d5a73 85f0cd3 7a3dcd9 d0d5a73 9dc6d1b 7a3dcd9 934edda 7a3dcd9 d0d5a73 392eb9f d0d5a73 2ded7ac d0d5a73 392eb9f 6081fa7 392eb9f e75ec7f 392eb9f b4fecc1 59531f5 5b872f6 d0d5a73 dcf7790 5621e21 d0d5a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import streamlit as st
import time
from transformers import pipeline
import torch
trust_remote_code=True
st.markdown('## Text-generation gpt Muse from Breadlicker45')
use_auth_token=True
@st.cache(allow_output_mutation=True, suppress_st_warning =True, show_spinner=False)
def get_model():
return pipeline('text-generation', model=model, do_sample=False)
col1, col2 = st.columns([2,1])
with st.sidebar:
st.markdown('## Model Parameters')
max_length = st.slider('Max text length', 0, 2000, 80)
num_beams = st.slider('N° tree beams search', 1, 15, 1)
early_stopping = st.selectbox(
'Early stopping text generation',
('True', 'False'), key={'True' : True, 'False': False}, index=0)
no_ngram_repeat = st.slider('Max repetition limit', 1, 3, 1)
st.markdown('## how to convert it into midi. go to this site https://mrcheeze.github.io/musenet-midi/ and then paste the numbers/musenet encoders you get from the ai into the big box and then click export midi')
with col1:
prompt= st.text_area('Your prompt here',
'''2623 2619 3970 3976 2607 3973 2735 3973 2598 3985 2726 3973 2607 4009 2735 3973 2598 3973 2726 3973 2607 3973 2735 4009''')
with col2:
select_model = st.radio(
"Select the model to use:",
('MuseWeb', 'MusePy', 'MuseNeo', 'MusePy-1-1', 'MuseCan'), index = 4)
if select_model == 'MuseWeb':
model = 'breadlicker45/museweb'
elif select_model == 'MusePy':
model = 'breadlicker45/MusePy'
elif select_model == 'MuseNeo':
model = 'breadlicker45/MuseNeo'
elif select_model == 'MusePy-1-1':
model = 'BreadAi/MusePy-1-1'
elif select_model == 'MuseCan':
model = 'BreadAi/MuseCan'
with st.spinner('Loading Model... (This may take a while)'):
generator = get_model()
st.success('Model loaded correctly!')
gen = st.info('Generating text...')
answer = generator(prompt,
max_length=max_length, no_repeat_ngram_size=no_ngram_repeat,
early_stopping=early_stopping, num_beams=num_beams, do_sample=False)
gen.empty()
lst = answer[0]['generated_text']
t = st.empty()
for i in range(len(lst)):
t.markdown("#### %s" % lst[0:i])
time.sleep(0.04) |