File size: 2,488 Bytes
edc4276
01e4bba
 
c4d5407
 
 
401d1a7
62a9143
 
 
 
 
 
d69f584
01e4bba
1b42e45
d69f584
6955253
 
 
 
 
 
 
edc4276
d69f584
 
c4d5407
577a126
d69f584
c4d5407
577a126
 
edc4276
577a126
 
 
edc4276
577a126
 
 
d69f584
577a126
 
 
 
 
 
d69f584
01e4bba
 
d69f584
577a126
 
d69f584
577a126
 
 
 
 
 
 
 
 
d69f584
577a126
d69f584
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import joblib
import pandas as pd
import numpy as np

try:
    import sklearn
    st.write("scikit-learn is installed.")
except ImportError:
    st.error("scikit-learn is not installed.")

# Load your emotion prediction model
emotion_model = load_model('lstm_model.h5')

# Load the KNN recommender model
#recommender_model = joblib.load('knn_model.pkl')

# Load the KNN recommender model
try:
    recommender_model = joblib.load('knn_model.pkl')
except Exception as e:
    st.error(f"Error loading model: {e}")

# Load the tokenizer (ensure it's the one used during training)
# tokenizer = joblib.load('tokenizer.pkl')  # Update this to the correct path

# Load the dataset
df = pd.read_csv('df1.csv')  # Ensure this is the correct DataFrame

# Set up the title of the app
st.title('Emotion and Audio Feature-based Song Recommendation System')

# Input field for lyrics
st.header('Enter Song Lyrics')
lyrics = st.text_area("Input the lyrics of the song here:")

# Input fields for audio features
st.header('Enter Audio Features')
audio_features = []
for feature_name in df.columns:  # Ensure this matches your DataFrame's structure
    feature = st.number_input(f"Enter value for {feature_name}:", step=0.01)
    audio_features.append(feature)

# Predict and Recommend button
if st.button('Predict Emotion and Recommend Songs'):
    if lyrics and all(audio_features):
        # Process the lyrics
        sequence = tokenizer.texts_to_sequences([lyrics])
        padded_sequence = pad_sequences(sequence, maxlen=128)
        emotion = emotion_model.predict(padded_sequence).flatten()

        # Combine emotion and audio features for recommendation
        combined_features = np.concatenate([emotion, audio_features])  # Ensure the concatenation logic matches your model's expectation

        # Generate recommendations using the KNN model
        distances, indices = recommender_model.kneighbors([combined_features], n_neighbors=5)
        recommended_songs = df.iloc[indices.flatten()]

        # Display emotion and recommendations
        st.write("Emotion Detected:", emotion[0])  # Adjust as per your model's output
        st.header('Recommended Songs')
        for _, song in recommended_songs.iterrows():
            st.write(song)  # Customize this to display relevant song info
    else:
        st.error("Please fill in all the fields.")