SpotifyProject / app.py
brendabor's picture
Update app.py
3246224
raw
history blame
2.25 kB
import streamlit as st
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import joblib
import pandas as pd
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import StandardScaler
# Load the KNN model
knn_model = joblib.load('knn_model.joblib')
# Load the dataset
df = pd.read_csv('df1.csv')
# Preprocess for KNN
audio_feature_columns = ['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
'duration_ms', 'time_signature']
audio_features = df[audio_feature_columns]
mood_cats = df[['mood_cats']]
mood_cats_df = pd.DataFrame(mood_cats)
# Normalize audio features for KNN
scaler_knn = StandardScaler()
audio_features_scaled_knn = scaler_knn.fit_transform(audio_features)
audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_feature_columns)
combined_features_knn = pd.concat([mood_cats_df, audio_features_df_knn], axis=1)
# Function for KNN-based recommendation
def recommend_knn(query_index, n_recommendations=5):
distances, indices = knn_model.kneighbors(combined_features_knn.iloc[query_index].values.reshape(1, -1), n_neighbors=n_recommendations)
recommended_songs = df.iloc[indices.flatten()].copy()
# Convert distances to scores
recommended_songs['score'] = 1 / (1 + distances.flatten()) # Inverse of distance
return recommended_songs
# Set up the title of the app
st.title('KNN Recommender App')
# Get song index from user input
song_index_to_recommend = st.number_input('Enter song index:', min_value=0, max_value=len(df)-1, value=0)
# Combine emotion and audio features for recommendation
# combined_features = np.concatenate([emotion, audio_features_scaled_knn[song_index_to_recommend]])
# Get KNN recommendations
knn_recs = recommend_knn(song_index_to_recommend)
# Display KNN recommendations
st.write("KNN Recommendations:")
if not knn_recs.empty:
for index in knn_recs.index:
st.write(f"Song Index: {index}, Title: {df.iloc[index]['title']}, Artist: {df.iloc[index]['artist']}, Score: {knn_recs.loc[index, 'score']}")
else:
st.write("No recommendations found.")