brendabor commited on
Commit
1f1ddee
·
1 Parent(s): 946af09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -34,13 +34,17 @@ def hybrid_recommendation(song_index):
34
  predicted_emotion = emotion_model.predict(padded_sequence).flatten()
35
 
36
  # Preprocess for KNN
37
- audio_features_knn = query_data[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
38
  'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
39
  'duration_ms', 'time_signature']].values.reshape(1, -1)
40
- mood_cats = query_data[['mood_cats']]
41
  mood_cats_df = pd.DataFrame(mood_cats)
42
  audio_features_scaled_knn = scaler_knn.fit_transform(audio_features_knn)
43
- combined_features = pd.concat([mood_cats_df, pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns)], axis=1)
 
 
 
 
44
 
45
  # Predict using the KNN model
46
  knn_recommendations = knn_model.kneighbors(combined_features, n_neighbors=5, return_distance=False)[0]
 
34
  predicted_emotion = emotion_model.predict(padded_sequence).flatten()
35
 
36
  # Preprocess for KNN
37
+ audio_features_knn = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
38
  'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
39
  'duration_ms', 'time_signature']].values.reshape(1, -1)
40
+ mood_cats = df[['mood_cats']]
41
  mood_cats_df = pd.DataFrame(mood_cats)
42
  audio_features_scaled_knn = scaler_knn.fit_transform(audio_features_knn)
43
+
44
+ audio_features_df = pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns)
45
+ # Combine mood and audio features
46
+ combined_features = pd.concat([mood_cats_df, audio_features_df], axis=1)
47
+ #combined_features = pd.concat([mood_cats_df, pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns)], axis=1)
48
 
49
  # Predict using the KNN model
50
  knn_recommendations = knn_model.kneighbors(combined_features, n_neighbors=5, return_distance=False)[0]