Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,11 @@ from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
4 |
import joblib
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
from sklearn.preprocessing import StandardScaler
|
9 |
|
10 |
# Load the emotion prediction model
|
11 |
emotion_model = load_model('lstm_model.h5')
|
12 |
|
13 |
-
# Load the KNN recommender model
|
14 |
-
# try:
|
15 |
-
# recommender_model = joblib.load('knn_model.pkl')
|
16 |
-
# except Exception as e:
|
17 |
-
# st.error(f"Error loading KNN model: {e}")
|
18 |
-
|
19 |
# Load the tokenizer (ensure it's the one used during training)
|
20 |
tokenizer = joblib.load('tokenizer.pkl')
|
21 |
|
@@ -23,21 +16,15 @@ tokenizer = joblib.load('tokenizer.pkl')
|
|
23 |
df = pd.read_csv('df1.csv')
|
24 |
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1)
|
25 |
|
26 |
-
# Load the
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
|
32 |
# Load the hybrid recommendation function
|
33 |
hybrid_recommendation = joblib.load('hybrid_recommendation_function.joblib')
|
34 |
|
35 |
-
# Load the KNN model
|
36 |
-
knn = joblib.load('knn_model.joblib')
|
37 |
-
|
38 |
-
# Load the KNN recommendation function
|
39 |
-
recommend_knn = joblib.load('recommendation_knn_function.joblib')
|
40 |
-
|
41 |
# Preprocess for content-based
|
42 |
audio_features = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
43 |
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
|
@@ -50,18 +37,6 @@ audio_features_df = pd.DataFrame(audio_features_scaled, columns=audio_features.c
|
|
50 |
mood_cats_df = pd.DataFrame(mood_cats)
|
51 |
combined_features_content = pd.concat([mood_cats_df, audio_features_df], axis=1)
|
52 |
|
53 |
-
# Preprocess for KNN
|
54 |
-
audio_features_knn = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
55 |
-
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
|
56 |
-
'duration_ms', 'time_signature']]
|
57 |
-
mood_cats_knn = df[['mood_cats']]
|
58 |
-
|
59 |
-
scaler_knn = StandardScaler()
|
60 |
-
audio_features_scaled_knn = scaler_knn.fit_transform(audio_features_knn)
|
61 |
-
audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns)
|
62 |
-
mood_cats_df_knn = pd.DataFrame(mood_cats_knn)
|
63 |
-
combined_features_knn = pd.concat([mood_cats_df_knn, audio_features_df_knn], axis=1)
|
64 |
-
|
65 |
# Set up the title of the app
|
66 |
st.title('Emotion and Audio Feature-based Song Recommendation System')
|
67 |
|
|
|
4 |
import joblib
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
|
|
7 |
from sklearn.preprocessing import StandardScaler
|
8 |
|
9 |
# Load the emotion prediction model
|
10 |
emotion_model = load_model('lstm_model.h5')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Load the tokenizer (ensure it's the one used during training)
|
13 |
tokenizer = joblib.load('tokenizer.pkl')
|
14 |
|
|
|
16 |
df = pd.read_csv('df1.csv')
|
17 |
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1)
|
18 |
|
19 |
+
# Load the content-based recommendation module
|
20 |
+
recommend_cont_module = joblib.load('recommendation_cont_function.joblib')
|
21 |
|
22 |
+
# Call the function from the module
|
23 |
+
hybrid_recs = recommend_cont_module.recommend_cont(song_index=0)
|
24 |
|
25 |
# Load the hybrid recommendation function
|
26 |
hybrid_recommendation = joblib.load('hybrid_recommendation_function.joblib')
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Preprocess for content-based
|
29 |
audio_features = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
30 |
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
|
|
|
37 |
mood_cats_df = pd.DataFrame(mood_cats)
|
38 |
combined_features_content = pd.concat([mood_cats_df, audio_features_df], axis=1)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Set up the title of the app
|
41 |
st.title('Emotion and Audio Feature-based Song Recommendation System')
|
42 |
|