Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -59,9 +59,6 @@ emotion = emotion_model.predict(padded_sequence).flatten()
|
|
59 |
# Combine emotion and audio features for recommendation
|
60 |
combined_features = np.concatenate([emotion, audio_features_scaled_knn[song_index_to_recommend]])
|
61 |
|
62 |
-
# Get KNN-based recommendations
|
63 |
-
knn_recs = recommend_knn(song_index_to_recommend)
|
64 |
-
|
65 |
# Display the predicted emotion and recommendations
|
66 |
st.write(f"Predicted Emotion: {emotion}")
|
67 |
|
@@ -70,4 +67,4 @@ if not knn_recs.empty:
|
|
70 |
for index, row in knn_recs.iterrows():
|
71 |
st.write(f"Song Index: {index}, Title: {row['title']}, Artist: {row['artist']}, Score: {row['score']}")
|
72 |
else:
|
73 |
-
st.write("No KNN Recommendations found."
|
|
|
59 |
# Combine emotion and audio features for recommendation
|
60 |
combined_features = np.concatenate([emotion, audio_features_scaled_knn[song_index_to_recommend]])
|
61 |
|
|
|
|
|
|
|
62 |
# Display the predicted emotion and recommendations
|
63 |
st.write(f"Predicted Emotion: {emotion}")
|
64 |
|
|
|
67 |
for index, row in knn_recs.iterrows():
|
68 |
st.write(f"Song Index: {index}, Title: {row['title']}, Artist: {row['artist']}, Score: {row['score']}")
|
69 |
else:
|
70 |
+
st.write("No KNN Recommendations found.")
|