Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,74 +6,85 @@ import pandas as pd
|
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import StandardScaler
|
8 |
|
9 |
-
|
10 |
-
tokenizer
|
|
|
11 |
|
12 |
-
# Load the emotion prediction model
|
13 |
-
emotion_model = load_model('lstm_model.h5')
|
14 |
|
15 |
-
# Load the dataset
|
16 |
-
df = pd.read_csv('df1.csv')
|
17 |
-
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1)
|
18 |
|
19 |
-
# Preprocess for content-based
|
20 |
-
audio_feature_columns = ['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
audio_features = df[audio_feature_columns]
|
25 |
-
mood_cats = df[['mood_cats']]
|
26 |
-
mood_cats_df = pd.DataFrame(mood_cats)
|
27 |
|
28 |
-
# Normalize audio features for content-based
|
29 |
-
scaler_cb = StandardScaler()
|
30 |
-
audio_features_scaled_cb = scaler_cb.fit_transform(audio_features)
|
31 |
-
audio_features_df_cb = pd.DataFrame(audio_features_scaled_cb, columns=audio_feature_columns)
|
32 |
-
combined_features_cb = pd.concat([mood_cats, audio_features_df_cb], axis=1)
|
33 |
|
34 |
-
# Load the similarity matrix for content-based
|
35 |
-
similarity_matrix = np.load('similarity_matrix.npy')
|
36 |
|
37 |
-
# Load the content-based recommendation function
|
38 |
-
recommend_cont = joblib.load('recommendation_cont_function.joblib')
|
39 |
|
40 |
-
# Preprocessing for KNN
|
41 |
-
scaler_knn = StandardScaler()
|
42 |
-
audio_features_scaled_knn = scaler_knn.fit_transform(audio_features)
|
43 |
-
audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_feature_columns)
|
44 |
-
combined_features_knn = pd.concat([mood_cats_df, audio_features_df_knn], axis=1)
|
45 |
|
46 |
-
# Load the KNN model
|
47 |
-
knn = joblib.load('knn_model.joblib')
|
48 |
|
49 |
-
# Load the KNN recommendation function
|
50 |
-
recommend_knn = joblib.load('recommendation_knn_function.joblib')
|
51 |
|
52 |
-
# Load the hybrid recommendation function
|
53 |
-
hybrid_recommendation = joblib.load('hybrid_recommendation_function.joblib')
|
54 |
|
55 |
-
|
56 |
-
st.title('Emotion and Audio Feature-based Song Recommendation System')
|
57 |
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
padded_sequence = pad_sequences(sequence, maxlen=50)
|
64 |
-
emotion = emotion_model.predict(padded_sequence).flatten()
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
encoded_emotion = np.argmax(emotion)
|
69 |
-
emotion_category = emotion_mapping[encoded_emotion]
|
70 |
|
71 |
-
#
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
#
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
st.write("Emotion Detected:", emotion[0])
|
78 |
-
st.header('Recommended Songs (Hybrid)')
|
79 |
-
st.write(hybrid_recs)
|
|
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import StandardScaler
|
8 |
|
9 |
+
def load_models():
|
10 |
+
# Load the tokenizer (ensure it's the one used during training)
|
11 |
+
tokenizer = joblib.load('tokenizer.pkl')
|
12 |
|
13 |
+
# Load the emotion prediction model
|
14 |
+
emotion_model = load_model('lstm_model.h5')
|
15 |
|
16 |
+
# Load the dataset
|
17 |
+
df = pd.read_csv('df1.csv')
|
18 |
+
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1)
|
19 |
|
20 |
+
# Preprocess for content-based
|
21 |
+
audio_feature_columns = ['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
22 |
+
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
|
23 |
+
'duration_ms', 'time_signature']
|
24 |
|
25 |
+
audio_features = df[audio_feature_columns]
|
26 |
+
mood_cats = df[['mood_cats']]
|
27 |
+
mood_cats_df = pd.DataFrame(mood_cats)
|
28 |
|
29 |
+
# Normalize audio features for content-based
|
30 |
+
scaler_cb = StandardScaler()
|
31 |
+
audio_features_scaled_cb = scaler_cb.fit_transform(audio_features)
|
32 |
+
audio_features_df_cb = pd.DataFrame(audio_features_scaled_cb, columns=audio_feature_columns)
|
33 |
+
combined_features_cb = pd.concat([mood_cats, audio_features_df_cb], axis=1)
|
34 |
|
35 |
+
# Load the similarity matrix for content-based
|
36 |
+
similarity_matrix = np.load('similarity_matrix.npy')
|
37 |
|
38 |
+
# Load the content-based recommendation function
|
39 |
+
recommend_cont = joblib.load('recommendation_cont_function.joblib')
|
40 |
|
41 |
+
# Preprocessing for KNN
|
42 |
+
scaler_knn = StandardScaler()
|
43 |
+
audio_features_scaled_knn = scaler_knn.fit_transform(audio_features)
|
44 |
+
audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_feature_columns)
|
45 |
+
combined_features_knn = pd.concat([mood_cats_df, audio_features_df_knn], axis=1)
|
46 |
|
47 |
+
# Load the KNN model
|
48 |
+
knn = joblib.load('knn_model.joblib')
|
49 |
|
50 |
+
# Load the KNN recommendation function
|
51 |
+
recommend_knn = joblib.load('recommendation_knn_function.joblib')
|
52 |
|
53 |
+
# Load the hybrid recommendation function
|
54 |
+
hybrid_recommendation = joblib.load('hybrid_recommendation_function.joblib')
|
55 |
|
56 |
+
return tokenizer, emotion_model, df, audio_feature_columns, combined_features_cb, similarity_matrix, recommend_cont, mood_cats_df, audio_features_df_knn, combined_features_knn, knn, recommend_knn, hybrid_recommendation
|
|
|
57 |
|
58 |
+
def main():
|
59 |
+
# Set up the title of the app
|
60 |
+
st.title('Emotion and Audio Feature-based Song Recommendation System')
|
61 |
|
62 |
+
# Load models and data
|
63 |
+
tokenizer, emotion_model, df, audio_feature_columns, combined_features_cb, similarity_matrix, recommend_cont, mood_cats_df, audio_features_df_knn, combined_features_knn, knn, recommend_knn, hybrid_recommendation = load_models()
|
|
|
|
|
64 |
|
65 |
+
# Get data from index 0
|
66 |
+
query_data = df.iloc[0]
|
|
|
|
|
67 |
|
68 |
+
# Process the lyrics
|
69 |
+
sequence = tokenizer.texts_to_sequences([query_data['lyrics']])
|
70 |
+
padded_sequence = pad_sequences(sequence, maxlen=50)
|
71 |
+
emotion = emotion_model.predict(padded_sequence).flatten()
|
72 |
|
73 |
+
# Mapping emotion predictions to encoded categories
|
74 |
+
emotion_mapping = {0: 'happy', 1: 'sad', 2: 'calm', 3: 'anger'}
|
75 |
+
encoded_emotion = np.argmax(emotion)
|
76 |
+
emotion_category = emotion_mapping[encoded_emotion]
|
77 |
+
|
78 |
+
# Combine emotion and audio features for recommendation
|
79 |
+
combined_features_hybrid = np.concatenate([encoded_emotion, query_data[audio_feature_columns].values])
|
80 |
+
|
81 |
+
# Generate recommendations using the hybrid model
|
82 |
+
hybrid_recs = hybrid_recommendation(song_index=0)
|
83 |
+
|
84 |
+
st.write("Emotion Detected:", emotion[0])
|
85 |
+
st.header('Recommended Songs (Hybrid)')
|
86 |
+
st.write(hybrid_recs)
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
main()
|
90 |
|
|
|
|
|
|