import streamlit as st from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import joblib import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import StandardScaler # Load the emotion prediction model emotion_model = load_model('lstm_model.h5') # Load the KNN recommender model # try: # recommender_model = joblib.load('knn_model.pkl') # except Exception as e: # st.error(f"Error loading KNN model: {e}") # Load the tokenizer (ensure it's the one used during training) tokenizer = joblib.load('tokenizer.pkl') # Load the dataset df = pd.read_csv('df1.csv') df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1) # Load the similarity matrix similarity_matrix = np.load('similarity_matrix.npy') # Load the content-based recommendation function recommend_cont = joblib.load('recommendation_cont_function.joblib') # Load the hybrid recommendation function hybrid_recommendation = joblib.load('hybrid_recommendation_function.joblib') # Load the content-based recommendation function recommend_cont = joblib.load('recommendation_cont_function.joblib') # Load the KNN model knn = joblib.load('knn_model.joblib') # Load the KNN recommendation function recommend_knn = joblib.load('recommendation_knn_function.joblib') # Preprocess for content-based audio_features = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'time_signature']] mood_cats = df[['mood_cats']] scaler = StandardScaler() audio_features_scaled = scaler.fit_transform(audio_features) audio_features_df = pd.DataFrame(audio_features_scaled, columns=audio_features.columns) mood_cats_df = pd.DataFrame(mood_cats) combined_features_content = pd.concat([mood_cats_df, audio_features_df], axis=1) # Preprocess for KNN audio_features_knn = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'time_signature']] mood_cats_knn = df[['mood_cats']] scaler_knn = StandardScaler() audio_features_scaled_knn = scaler_knn.fit_transform(audio_features_knn) audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns) mood_cats_df_knn = pd.DataFrame(mood_cats_knn) combined_features_knn = pd.concat([mood_cats_df_knn, audio_features_df_knn], axis=1) # Set up the title of the app st.title('Emotion and Audio Feature-based Song Recommendation System') # Get data from index 0 query_data = df.iloc[0] # Process the lyrics sequence = tokenizer.texts_to_sequences([query_data['lyrics']]) padded_sequence = pad_sequences(sequence, maxlen=50) emotion = emotion_model.predict(padded_sequence).flatten() # Combine emotion and audio features for recommendation combined_features_hybrid = np.concatenate([emotion, query_data[audio_feature_columns].values]) # Generate recommendations using the hybrid model hybrid_recs = hybrid_recommendation(song_index=0) st.write("Emotion Detected:", emotion[0]) st.header('Recommended Songs (Hybrid)') st.write(hybrid_recs)