import streamlit as st import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import joblib import pandas as pd from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler from sklearn.metrics.pairwise import cosine_similarity # Load the LSTM model for emotion prediction emotion_model = load_model('lstm_model.h5') # Load the KNN model knn_model = joblib.load('knn_model.joblib') # Load the tokenizer tokenizer = joblib.load('tokenizer.pkl') # Load the dataset df = pd.read_csv('df1.csv') # Load the scaler for KNN scaler_knn = StandardScaler() # Function for hybrid recommendation def hybrid_recommendation(song_index): # Get data for the query song query_data = df.iloc[song_index] # Process the lyrics for emotion prediction using LSTM sequence = tokenizer.texts_to_sequences([query_data['lyrics']]) padded_sequence = pad_sequences(sequence, maxlen=50) predicted_emotion = emotion_model.predict(padded_sequence).flatten() # Preprocess for KNN audio_features_knn = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'time_signature']].values.reshape(1, -1) mood_cats = df[['mood_cats']] mood_cats_df = pd.DataFrame(mood_cats) audio_features_scaled_knn = scaler_knn.fit_transform(audio_features_knn) audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns.tolist()) #audio_features_df = pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns) # Combine mood and audio features combined_features = pd.concat([mood_cats_df, audio_features_df_knn], axis=1) # Predict using the KNN model knn_recommendations = knn_model.kneighbors(combined_features, n_neighbors=5, return_distance=False)[0] # Mapping emotion predictions to encoded categories emotion_mapping = {0: 'happy', 1: 'sad', 2: 'calm', 3: 'anger'} encoded_emotion = pd.Series(predicted_emotion).idxmax() emotion_category = emotion_mapping[encoded_emotion] # Compute cosine similarity for content-based recommendation features_for_similarity = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'time_signature']].values scaler_cb = StandardScaler() audio_features_scaled_cb = scaler_cb.fit_transform(features_for_similarity) # Combine mood and audio features combined_features_cb = np.concatenate([np.array([emotion_category]), audio_features_scaled_cb]) cosine_similarities = cosine_similarity([combined_features_cb]) # Combine recommendations from both models combined_indices = np.argsort(-np.concatenate([knn_recommendations, cosine_similarities])) hybrid_recs_sorted = combined_indices[:5] # Select top 5 recommendations return hybrid_recs_sorted # Set up the title of the app st.title('Hybrid Recommender App') # Get song index from user input song_index_to_recommend = st.number_input('Enter song index:', min_value=0, max_value=len(df)-1, value=0) # Get hybrid recommendations hybrid_recs = hybrid_recommendation(song_index_to_recommend) # Display the recommendations st.write("Hybrid Recommendations:") for index in hybrid_recs: st.write(f"Song Index: {index}, Title: {df.iloc[index]['title']}, Artist: {df.iloc[index]['artist']}")