import streamlit as st from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import joblib import pandas as pd import numpy as np # Check if scikit-learn is installed try: import sklearn st.write("scikit-learn is installed.") except ImportError: st.error("scikit-learn is not installed.") # Load your emotion prediction model emotion_model = load_model('lstm_model.h5') # Load the KNN recommender model try: recommender_model = joblib.load('knn_model.pkl') except Exception as e: st.error(f"Error loading model: {e}") # Load the tokenizer (ensure it's the one used during training) tokenizer = joblib.load('tokenizer.pkl') # Correct the path # Load the dataset and preprocess df = pd.read_csv('df1.csv') #df = df.dropna() df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1) # Set up the title of the app st.title('Emotion and Audio Feature-based Song Recommendation System') # Input field for lyrics st.header('Enter Song Lyrics') lyrics = st.text_area("Input the lyrics of the song here:") # Input fields for audio features st.header('Enter Audio Features') audio_features = [] #df = df.drop([ 'track_artist', 'track_name','Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"] axis=1) for feature_name in df.columns: feature = st.number_input(f"Enter value for {feature_name}:", step=0.01) audio_features.append(feature) # Predict and Recommend button if st.button('Predict Emotion and Recommend Songs'): if lyrics and all(audio_features): sequence = tokenizer.texts_to_sequences([lyrics]) padded_sequence = pad_sequences(sequence, maxlen=128) emotion = emotion_model.predict(padded_sequence).flatten() combined_features = np.concatenate([emotion, audio_features]) distances, indices = recommender_model.kneighbors([combined_features], n_neighbors=5) recommended_songs = df.iloc[indices.flatten()] st.write("Emotion Detected:", emotion[0]) st.header('Recommended Songs') for _, song in recommended_songs.iterrows(): st.write(song) else: st.error("Please fill in all the fields.")