Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,11 +8,17 @@ import matplotlib.pyplot as plt
|
|
8 |
extractor = AutoFeatureExtractor.from_pretrained("brendenc/my-segmentation-model")
|
9 |
model = AutoModelForImageClassification.from_pretrained("brendenc/my-segmentation-model")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
def classify(im):
|
12 |
inputs = extractor(images=im, return_tensors="pt")
|
13 |
outputs = model(**inputs)
|
14 |
logits = outputs.logits
|
15 |
classes = logits[0].detach().numpy().argmax(axis=0)
|
|
|
16 |
colors = np.array([[128,0,0], [128,128,0], [0, 0, 128], [128,0,128], [0, 0, 0]])
|
17 |
return colors[classes]
|
18 |
|
|
|
8 |
extractor = AutoFeatureExtractor.from_pretrained("brendenc/my-segmentation-model")
|
9 |
model = AutoModelForImageClassification.from_pretrained("brendenc/my-segmentation-model")
|
10 |
|
11 |
+
collapse_categories = {**{i: 0 for i in range(1, 8)},
|
12 |
+
**{i: 1 for i in range(8, 10)},
|
13 |
+
**{i: 2 for i in range(10, 18)},
|
14 |
+
**{i: 3 for i in range(18, 28)}}
|
15 |
+
|
16 |
def classify(im):
|
17 |
inputs = extractor(images=im, return_tensors="pt")
|
18 |
outputs = model(**inputs)
|
19 |
logits = outputs.logits
|
20 |
classes = logits[0].detach().numpy().argmax(axis=0)
|
21 |
+
classes = np.vectorize(lambda x: collapse_categories.get(x, 4))(classes)
|
22 |
colors = np.array([[128,0,0], [128,128,0], [0, 0, 128], [128,0,128], [0, 0, 0]])
|
23 |
return colors[classes]
|
24 |
|