import asyncio import json import re from typing import List, Dict import faiss import httpx import numpy as np import pandas as pd from sqlalchemy.ext.asyncio import AsyncSession from starlette.websockets import WebSocket from transformers import pipeline from project.bot.models import MessagePair from project.config import settings class SearchBot: chat_history = [] # is_unknown = False # unknown_counter = 0 def __init__(self, memory=None): if memory is None: memory = [] self.chat_history = memory @staticmethod def _cls_pooling(model_output): return model_output.last_hidden_state[:, 0] @staticmethod async def enrich_information_from_google(search_word: str) -> str: url = "https://places.googleapis.com/v1/places:searchText" headers = { "Content-Type": "application/json", "X-Goog-Api-Key": settings.GOOGLE_PLACES_API_KEY, "X-Goog-FieldMask": "places.shortFormattedAddress,places.websiteUri,places.internationalPhoneNumber," "places.googleMapsUri,places.photos" } data = { "textQuery": f"{search_word} in Javea", "languageCode": "nl", "maxResultCount": 1, } async with httpx.AsyncClient() as client: response = await client.post(url, headers=headers, content=json.dumps(data)) place_response = response.json() place_response = place_response['places'][0] photo_name = place_response.get('photos') photo_uri = None if photo_name: async with httpx.AsyncClient() as client: response = await client.get( f'https://places.googleapis.com/v1/{photo_name[0]["name"]}/media?maxWidthPx=350&key={settings.GOOGLE_PLACES_API_KEY}') photo_response = response.json() photo_uri = photo_response.get('photoUri') google_maps_uri = place_response.get('googleMapsUri') phone_number = place_response.get('internationalPhoneNumber') formatted_address = place_response.get('shortFormattedAddress') website_uri = place_response.get('websiteUri') if not google_maps_uri: return search_word enriched_word = f'{search_word}
' if photo_uri: enriched_word += f'Image' if formatted_address: enriched_word += f'

{formatted_address}

' if website_uri: enriched_word += f'

Google Maps URI

' if phone_number: phone_str = re.sub(r' ', '', phone_number) enriched_word += f'

Phone number

' enriched_word += f"
" return enriched_word async def analyze_full_response(self) -> str: assistant_message = self.chat_history.pop()['content'] nlp = pipeline("ner", model=settings.NLP_MODEL, tokenizer=settings.NLP_TOKENIZER, aggregation_strategy="simple") ner_result = nlp(assistant_message) analyzed_assistant_message = assistant_message for entity in ner_result: if entity['entity_group'] in ("LOC", "ORG", "MISC") and entity['word'] != "Javea": enriched_information = await self.enrich_information_from_google(entity['word']) analyzed_assistant_message = analyzed_assistant_message.replace(entity['word'], enriched_information, 1) return "ENRICHED:" + analyzed_assistant_message async def _convert_to_embeddings(self, text_list): encoded_input = settings.INFO_TOKENIZER( text_list, padding=True, truncation=True, return_tensors="pt" ) encoded_input = {k: v.to(settings.device) for k, v in encoded_input.items()} model_output = settings.INFO_MODEL(**encoded_input) return self._cls_pooling(model_output).cpu().detach().numpy().astype('float32') @staticmethod async def _get_context_data(user_query: list[float]) -> list[dict]: radius = 5 _, distances, indices = settings.FAISS_INDEX.range_search(user_query, radius) indices_distances_df = pd.DataFrame({'index': indices, 'distance': distances}) filtered_data_df = settings.products_dataset.iloc[indices].copy() filtered_data_df.loc[:, 'distance'] = indices_distances_df['distance'].values sorted_data_df: pd.DataFrame = filtered_data_df.sort_values(by='distance').reset_index(drop=True) sorted_data_df = sorted_data_df.drop('distance', axis=1) data = sorted_data_df.head(3).to_dict(orient='records') cleaned_data = [] for chunk in data: if "Comments:" in chunk['chunks']: cleaned_data.append(chunk) return cleaned_data @staticmethod async def create_context_str(context: List[Dict]) -> str: context_str = '' for i, chunk in enumerate(context): context_str += f'{i + 1}) {chunk["chunks"]}' return context_str async def _rag(self, context: List[Dict], query: str, session: AsyncSession, country: str): if context: context_str = await self.create_context_str(context) assistant_message = {"role": 'assistant', "content": context_str} self.chat_history.append(assistant_message) content = settings.PROMPT else: content = settings.EMPTY_PROMPT user_message = {"role": 'user', "content": query} self.chat_history.append(user_message) messages = [ { 'role': 'system', 'content': content }, ] messages = messages + self.chat_history stream = await settings.OPENAI_CLIENT.chat.completions.create( messages=messages, temperature=0.1, n=1, model="gpt-3.5-turbo", stream=True ) response = '' async for chunk in stream: if chunk.choices[0].delta.content is not None: chunk_content = chunk.choices[0].delta.content response += chunk_content yield response await asyncio.sleep(0.02) assistant_message = {"role": 'assistant', "content": response} self.chat_history.append(assistant_message) try: session.add(MessagePair(user_message=query, bot_response=response, country=country)) except Exception as e: print(e) async def ask_and_send(self, data: Dict, websocket: WebSocket, session: AsyncSession): query = data['query'] country = data['country'] transformed_query = await self._convert_to_embeddings(query) context = await self._get_context_data(transformed_query) try: async for chunk in self._rag(context, query, session, country): await websocket.send_text(chunk) analyzing = await self.analyze_full_response() await websocket.send_text(analyzing) except Exception: await self.emergency_db_saving(session) @staticmethod async def emergency_db_saving(session: AsyncSession): await session.commit() await session.close()