import asyncio from typing import List, Dict import faiss import numpy as np import pandas as pd from sqlalchemy.ext.asyncio import AsyncSession from starlette.websockets import WebSocket from project.bot.models import MessagePair from project.config import settings class SearchBot: chat_history = [] # is_unknown = False # unknown_counter = 0 def __init__(self, memory=None): if memory is None: memory = [] self.chat_history = memory async def _summarize_user_intent(self, user_query: str) -> str: chat_history_str = '' chat_history = self.chat_history[-self.unknown_counter * 2:] for i in chat_history: if i['role'] == 'user': chat_history_str += f"{i['role']}: {i['content']}\n" messages = [ { 'role': 'system', 'content': f"{settings.SUMMARIZE_PROMPT}\n" f"Chat history: ```{chat_history_str}```\n" f"User query: ```{user_query}```" } ] response = await settings.OPENAI_CLIENT.chat.completions.create( messages=messages, temperature=0.1, n=1, model="gpt-3.5-turbo-0125" ) user_intent = response.choices[0].message.content return user_intent @staticmethod def _cls_pooling(model_output): return model_output.last_hidden_state[:, 0] async def _convert_to_embeddings(self, text_list): encoded_input = settings.INFO_TOKENIZER( text_list, padding=True, truncation=True, return_tensors="pt" ) encoded_input = {k: v.to(settings.device) for k, v in encoded_input.items()} model_output = settings.INFO_MODEL(**encoded_input) return self._cls_pooling(model_output).cpu().detach().numpy().astype('float32') @staticmethod async def _get_context_data(user_query: list[float]) -> list[dict]: radius = 30 _, distances, indices = settings.FAISS_INDEX.range_search(user_query, radius) indices_distances_df = pd.DataFrame({'index': indices, 'distance': distances}) filtered_data_df = settings.products_dataset.iloc[indices].copy() filtered_data_df.loc[:, 'distance'] = indices_distances_df['distance'].values sorted_data_df: pd.DataFrame = filtered_data_df.sort_values(by='distance').reset_index(drop=True) sorted_data_df = sorted_data_df.drop('distance', axis=1) data = sorted_data_df.head(3).to_dict(orient='records') return data @staticmethod async def create_context_str(context: List[Dict]) -> str: context_str = '' for i, chunk in enumerate(context): context_str += f'{i + 1}) {chunk["chunks"]}' return context_str async def _rag(self, context: List[Dict], query: str, session: AsyncSession, country: str): if context: context_str = await self.create_context_str(context) assistant_message = {"role": 'assistant', "content": context_str} self.chat_history.append(assistant_message) content = settings.PROMPT else: content = settings.EMPTY_PROMPT user_message = {"role": 'user', "content": query} self.chat_history.append(user_message) messages = [ { 'role': 'system', 'content': content }, ] messages = messages + self.chat_history stream = await settings.OPENAI_CLIENT.chat.completions.create( messages=messages, temperature=0.1, n=1, model="gpt-3.5-turbo", stream=True ) response = '' async for chunk in stream: if chunk.choices[0].delta.content is not None: chunk_content = chunk.choices[0].delta.content response += chunk_content yield response await asyncio.sleep(0.02) assistant_message = {"role": 'assistant', "content": response} self.chat_history.append(assistant_message) try: session.add(MessagePair(user_message=query, bot_response=response, country=country)) except Exception as e: print(e) async def ask_and_send(self, data: Dict, websocket: WebSocket, session: AsyncSession): query = data['query'] country = data['country'] transformed_query = await self._convert_to_embeddings(query) context = await self._get_context_data(transformed_query) try: async for chunk in self._rag(context, query, session, country): await websocket.send_text(chunk) # await websocket.send_text('finish') except Exception: await self.emergency_db_saving(session) @staticmethod async def emergency_db_saving(session: AsyncSession): await session.commit() await session.close()