Spaces:
Running
Running
Optimize semantic entity filtering threshold
Browse filesLowered the score threshold for filtering entities from 0.75 to
trauma/api/message/ai/engine.py
CHANGED
@@ -75,6 +75,7 @@ async def search_entities(
|
|
75 |
async def search_semantic_entities(
|
76 |
search_request: str, entity_data: EntityData, entities_indexes: list[int]
|
77 |
) -> list[EntityModelExtended]:
|
|
|
78 |
embedding = await convert_value_to_embeddings(search_request)
|
79 |
query_embedding = np.array([embedding], dtype=np.float32)
|
80 |
distances, indices = settings.SEMANTIC_INDEX.search(query_embedding, k=settings.SEMANTIC_INDEX.ntotal)
|
@@ -121,6 +122,6 @@ async def set_entities_score(entities: list[EntityModelExtended], search_request
|
|
121 |
if score > 0.9:
|
122 |
entity.topMatch = True
|
123 |
entity.score = score
|
124 |
-
if score > 0.
|
125 |
final_entities.append(entity)
|
126 |
return sorted(final_entities, key=lambda x: x.score, reverse=True)
|
|
|
75 |
async def search_semantic_entities(
|
76 |
search_request: str, entity_data: EntityData, entities_indexes: list[int]
|
77 |
) -> list[EntityModelExtended]:
|
78 |
+
|
79 |
embedding = await convert_value_to_embeddings(search_request)
|
80 |
query_embedding = np.array([embedding], dtype=np.float32)
|
81 |
distances, indices = settings.SEMANTIC_INDEX.search(query_embedding, k=settings.SEMANTIC_INDEX.ntotal)
|
|
|
122 |
if score > 0.9:
|
123 |
entity.topMatch = True
|
124 |
entity.score = score
|
125 |
+
if score > 0.72:
|
126 |
final_entities.append(entity)
|
127 |
return sorted(final_entities, key=lambda x: x.score, reverse=True)
|
trauma/api/message/ai/openai_request.py
CHANGED
@@ -37,6 +37,7 @@ async def generate_next_question(instructions: str, message_history_str: str):
|
|
37 |
|
38 |
@openai_wrapper(temperature=0.4)
|
39 |
async def generate_search_request(user_messages_str: str, entity_data: dict):
|
|
|
40 |
messages = [
|
41 |
{
|
42 |
"role": "system",
|
|
|
37 |
|
38 |
@openai_wrapper(temperature=0.4)
|
39 |
async def generate_search_request(user_messages_str: str, entity_data: dict):
|
40 |
+
|
41 |
messages = [
|
42 |
{
|
43 |
"role": "system",
|