Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,225 Bytes
0842498 292ed4d 0842498 923b86d 0842498 95a9f0f 0842498 95a9f0f 0842498 63a0180 0842498 3638fca 0842498 f817fc9 0842498 95a9f0f 0842498 95a9f0f 0842498 95a9f0f 0842498 95a9f0f 0842498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
#!/usr/bin/env python
from __future__ import annotations
import gradio as gr
import torch
from app_canny import create_demo as create_demo_canny
# from app_depth import create_demo as create_demo_depth
# from app_recoloring import create_demo as create_demo_recoloring
from model import Model
DESCRIPTION = "# BRIA 2.2 ControlNets"
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name="Canny")
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem("Canny"):
create_demo_canny(model.process_canny)
with gr.TabItem("Depth (Future)"):
create_demo_canny(model.process_mlsd)
with gr.TabItem("Recoloring (Future)"):
create_demo_canny(model.process_scribble)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
################################################################
# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
# from diffusers.utils import load_image
# from PIL import Image
# import torch
# import numpy as np
# import cv2
# import gradio as gr
# from torchvision import transforms
# controlnet = ControlNetModel.from_pretrained(
# "briaai/BRIA-2.2-ControlNet-Canny",
# torch_dtype=torch.float16
# ).to('cuda')
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
# "briaai/BRIA-2.2",
# controlnet=controlnet,
# torch_dtype=torch.float16,
# device_map='auto',
# low_cpu_mem_usage=True,
# offload_state_dict=True,
# ).to('cuda')
# pipe.scheduler = EulerAncestralDiscreteScheduler(
# beta_start=0.00085,
# beta_end=0.012,
# beta_schedule="scaled_linear",
# num_train_timesteps=1000,
# steps_offset=1
# )
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.force_zeros_for_empty_prompt = False
# low_threshold = 100
# high_threshold = 200
# def resize_image(image):
# image = image.convert('RGB')
# current_size = image.size
# if current_size[0] > current_size[1]:
# center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
# else:
# center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
# resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
# return resized_image
# def get_canny_filter(image):
# if not isinstance(image, np.ndarray):
# image = np.array(image)
# image = cv2.Canny(image, low_threshold, high_threshold)
# image = image[:, :, None]
# image = np.concatenate([image, image, image], axis=2)
# canny_image = Image.fromarray(image)
# return canny_image
# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
# generator = torch.manual_seed(seed)
# # resize input_image to 1024x1024
# input_image = resize_image(input_image)
# canny_image = get_canny_filter(input_image)
# images = pipe(
# prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
# generator=generator,
# ).images
# return [canny_image,images[0]]
# block = gr.Blocks().queue()
# with block:
# gr.Markdown("## BRIA 2.2 ControlNet Canny")
# gr.HTML('''
# <p style="margin-bottom: 10px; font-size: 94%">
# This is a demo for ControlNet Canny that using
# <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
# Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
# </p>
# ''')
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
# prompt = gr.Textbox(label="Prompt")
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
# run_button = gr.Button(value="Run")
# with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
# block.launch(debug = True) |