Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import gc | |
import numpy as np | |
from PIL import Image | |
import torch | |
from diffusers import ( | |
ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler | |
) | |
import cv2 | |
from torchvision import transforms | |
CONTROLNET_MODEL_IDS = { | |
"Canny": "briaai/BRIA-2.2-ControlNet-Canny", | |
"Depth": "briaai/BRIA-2.2-ControlNet-Depth", | |
"Recoloring": "briaai/BRIA-2.2-ControlNet-Recoloring", | |
} | |
# def download_all_controlnet_weights() -> None: | |
# for model_id in CONTROLNET_MODEL_IDS.values(): | |
# ControlNetModel.from_pretrained(model_id) | |
class Model: | |
def __init__(self, base_model_id: str = "briaai/BRIA-2.2", task_name: str = "Canny"): | |
self.device = torch.device("cuda:0") | |
self.base_model_id = "" | |
self.task_name = "" | |
self.pipe = self.load_pipe(base_model_id, task_name) | |
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: | |
if ( | |
base_model_id == self.base_model_id | |
and task_name == self.task_name | |
and hasattr(self, "pipe") | |
and self.pipe is not None | |
): | |
return self.pipe | |
model_id = CONTROLNET_MODEL_IDS[task_name] | |
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16).to('cuda') | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
base_model_id, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
device_map='auto', | |
low_cpu_mem_usage=True, | |
offload_state_dict=True, | |
).to('cuda') | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
steps_offset=1 | |
) | |
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.force_zeros_for_empty_prompt = False | |
torch.cuda.empty_cache() | |
gc.collect() | |
self.base_model_id = base_model_id | |
self.task_name = task_name | |
print(f'Loaded {base_model_id}...') | |
print(f'Loaded {model_id}...') | |
return pipe | |
# def set_base_model(self, base_model_id: str) -> str: | |
# if not base_model_id or base_model_id == self.base_model_id: | |
# return self.base_model_id | |
# del self.pipe | |
# torch.cuda.empty_cache() | |
# gc.collect() | |
# try: | |
# self.pipe = self.load_pipe(base_model_id, self.task_name) | |
# except Exception: | |
# self.pipe = self.load_pipe(self.base_model_id, self.task_name) | |
# return self.base_model_id | |
def load_controlnet_weight(self, task_name: str) -> None: | |
print('Entered load_controlnet_weight....') | |
# if task_name == self.task_name: | |
# return | |
# if self.pipe is not None and hasattr(self.pipe, "controlnet"): | |
# del self.pipe.controlnet | |
# torch.cuda.empty_cache() | |
# gc.collect() | |
# model_id = CONTROLNET_MODEL_IDS[task_name] | |
# controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) | |
# print(f'Loaded {model_id}...') | |
# controlnet.to(self.device) | |
# torch.cuda.empty_cache() | |
# gc.collect() | |
# self.pipe.controlnet = controlnet | |
# self.task_name = task_name | |
def get_prompt(self, prompt: str, additional_prompt: str) -> str: | |
if not prompt: | |
prompt = additional_prompt | |
else: | |
prompt = f"{prompt}, {additional_prompt}" | |
return prompt | |
def run_pipe( | |
self, | |
prompt: str, | |
negative_prompt: str, | |
control_image: Image.Image, | |
num_images: int, | |
num_steps: int, | |
controlnet_conditioning_scale: float, | |
seed: int, | |
) -> list[Image.Image]: | |
generator = torch.Generator().manual_seed(seed) | |
return self.pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_images_per_prompt=num_images, | |
num_inference_steps=num_steps, | |
generator=generator, | |
image=control_image, | |
).images | |
def resize_image(self, image): | |
image = image.convert('RGB') | |
current_size = image.size | |
if current_size[0] > current_size[1]: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
else: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
return resized_image | |
def get_canny_filter(self, image): | |
low_threshold = 100 | |
high_threshold = 200 | |
if not isinstance(image, np.ndarray): | |
image = np.array(image) | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def process_canny( | |
self, | |
image: np.ndarray, | |
prompt: str, | |
negative_prompt: str, | |
# image_resolution: int, | |
num_steps: int, | |
controlnet_conditioning_scale: float, | |
seed: int, | |
) -> list[Image.Image]: | |
# resize input_image to 1024x1024 | |
input_image = self.resize_image(image) | |
canny_image = self.get_canny_filter(input_image) | |
self.load_controlnet_weight("Canny") | |
results = self.run_pipe( | |
prompt=prompt, negative_prompt=negative_prompt, control_image=canny_image, num_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), seed=seed, num_images=1, | |
) | |
print(f'Image is {results[0]}') | |
print(prompt) | |
print(negative_prompt) | |
print(num_steps) | |
print(controlnet_conditioning_scale) | |
print(seed) | |
return [canny_image, results[0]] | |
################################################################################################################################ | |
# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
# from diffusers.utils import load_image | |
# from PIL import Image | |
# import torch | |
# import numpy as np | |
# import cv2 | |
# import gradio as gr | |
# from torchvision import transforms | |
# controlnet = ControlNetModel.from_pretrained( | |
# "briaai/BRIA-2.2-ControlNet-Canny", | |
# torch_dtype=torch.float16 | |
# ).to('cuda') | |
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
# "briaai/BRIA-2.2", | |
# controlnet=controlnet, | |
# torch_dtype=torch.float16, | |
# device_map='auto', | |
# low_cpu_mem_usage=True, | |
# offload_state_dict=True, | |
# ).to('cuda') | |
# pipe.scheduler = EulerAncestralDiscreteScheduler( | |
# beta_start=0.00085, | |
# beta_end=0.012, | |
# beta_schedule="scaled_linear", | |
# num_train_timesteps=1000, | |
# steps_offset=1 | |
# ) | |
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) | |
# pipe.enable_xformers_memory_efficient_attention() | |
# pipe.force_zeros_for_empty_prompt = False | |
# low_threshold = 100 | |
# high_threshold = 200 | |
# def resize_image(image): | |
# image = image.convert('RGB') | |
# current_size = image.size | |
# if current_size[0] > current_size[1]: | |
# center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
# else: | |
# center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
# resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
# return resized_image | |
# def get_canny_filter(image): | |
# if not isinstance(image, np.ndarray): | |
# image = np.array(image) | |
# image = cv2.Canny(image, low_threshold, high_threshold) | |
# image = image[:, :, None] | |
# image = np.concatenate([image, image, image], axis=2) | |
# canny_image = Image.fromarray(image) | |
# return canny_image | |
# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): | |
# generator = torch.manual_seed(seed) | |
# # resize input_image to 1024x1024 | |
# input_image = resize_image(input_image) | |
# canny_image = get_canny_filter(input_image) | |
# images = pipe( | |
# prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
# generator=generator, | |
# ).images | |
# return [canny_image,images[0]] | |
# block = gr.Blocks().queue() | |
# with block: | |
# gr.Markdown("## BRIA 2.2 ControlNet Canny") | |
# gr.HTML(''' | |
# <p style="margin-bottom: 10px; font-size: 94%"> | |
# This is a demo for ControlNet Canny that using | |
# <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone. | |
# Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement. | |
# </p> | |
# ''') | |
# with gr.Row(): | |
# with gr.Column(): | |
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
# prompt = gr.Textbox(label="Prompt") | |
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") | |
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) | |
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) | |
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) | |
# run_button = gr.Button(value="Run") | |
# with gr.Column(): | |
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') | |
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] | |
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
# block.launch(debug = True) |