dvir-bria commited on
Commit
2798842
·
verified ·
1 Parent(s): e90929c

Update app_canny.py

Browse files
Files changed (1) hide show
  1. app_canny.py +164 -0
app_canny.py CHANGED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ import gradio as gr
4
+
5
+ from settings import (
6
+ DEFAULT_IMAGE_RESOLUTION,
7
+ DEFAULT_NUM_IMAGES,
8
+ MAX_IMAGE_RESOLUTION,
9
+ MAX_NUM_IMAGES,
10
+ MAX_SEED,
11
+ )
12
+ from utils import randomize_seed_fn
13
+
14
+
15
+ def create_demo(process):
16
+ with gr.Blocks() as demo:
17
+ gr.Markdown("## BRIA 2.2 ControlNet Canny")
18
+ gr.HTML('''
19
+ <p style="margin-bottom: 10px; font-size: 94%">
20
+ This is a demo for ControlNet Canny that using
21
+ <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
22
+ Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
23
+ </p>
24
+ ''')
25
+ with gr.Row():
26
+ with gr.Column():
27
+ input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
28
+ prompt = gr.Textbox(label="Prompt")
29
+ negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
30
+ num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
31
+ controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
32
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
33
+ run_button = gr.Button(value="Run")
34
+ with gr.Column():
35
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
36
+ ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
37
+
38
+ run_button.click(
39
+ fn=process,
40
+ inputs=inputs,
41
+ outputs=result,
42
+ api_name="canny",
43
+ )
44
+ return demo
45
+
46
+
47
+ if __name__ == "__main__":
48
+ from model import Model
49
+
50
+ model = Model(task_name="Canny")
51
+ demo = create_demo(model.process_canny)
52
+ demo.queue().launch()
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ -----------------------------------------------------------------------
61
+
62
+
63
+
64
+
65
+ # from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
66
+ # from diffusers.utils import load_image
67
+ # from PIL import Image
68
+ # import torch
69
+ # import numpy as np
70
+ # import cv2
71
+ # import gradio as gr
72
+ # from torchvision import transforms
73
+
74
+ # controlnet = ControlNetModel.from_pretrained(
75
+ # "briaai/BRIA-2.2-ControlNet-Canny",
76
+ # torch_dtype=torch.float16
77
+ # ).to('cuda')
78
+
79
+ # pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
80
+ # "briaai/BRIA-2.2",
81
+ # controlnet=controlnet,
82
+ # torch_dtype=torch.float16,
83
+ # device_map='auto',
84
+ # low_cpu_mem_usage=True,
85
+ # offload_state_dict=True,
86
+ # ).to('cuda')
87
+ # pipe.scheduler = EulerAncestralDiscreteScheduler(
88
+ # beta_start=0.00085,
89
+ # beta_end=0.012,
90
+ # beta_schedule="scaled_linear",
91
+ # num_train_timesteps=1000,
92
+ # steps_offset=1
93
+ # )
94
+ # # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
95
+ # pipe.enable_xformers_memory_efficient_attention()
96
+ # pipe.force_zeros_for_empty_prompt = False
97
+
98
+ # low_threshold = 100
99
+ # high_threshold = 200
100
+
101
+ # def resize_image(image):
102
+ # image = image.convert('RGB')
103
+ # current_size = image.size
104
+ # if current_size[0] > current_size[1]:
105
+ # center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
106
+ # else:
107
+ # center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
108
+ # resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
109
+ # return resized_image
110
+
111
+ # def get_canny_filter(image):
112
+
113
+ # if not isinstance(image, np.ndarray):
114
+ # image = np.array(image)
115
+
116
+ # image = cv2.Canny(image, low_threshold, high_threshold)
117
+ # image = image[:, :, None]
118
+ # image = np.concatenate([image, image, image], axis=2)
119
+ # canny_image = Image.fromarray(image)
120
+ # return canny_image
121
+
122
+ # def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
123
+ # generator = torch.manual_seed(seed)
124
+
125
+ # # resize input_image to 1024x1024
126
+ # input_image = resize_image(input_image)
127
+
128
+ # canny_image = get_canny_filter(input_image)
129
+
130
+ # images = pipe(
131
+ # prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
132
+ # generator=generator,
133
+ # ).images
134
+
135
+ # return [canny_image,images[0]]
136
+
137
+ # block = gr.Blocks().queue()
138
+
139
+ # with block:
140
+ # gr.Markdown("## BRIA 2.2 ControlNet Canny")
141
+ # gr.HTML('''
142
+ # <p style="margin-bottom: 10px; font-size: 94%">
143
+ # This is a demo for ControlNet Canny that using
144
+ # <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
145
+ # Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
146
+ # </p>
147
+ # ''')
148
+ # with gr.Row():
149
+ # with gr.Column():
150
+ # input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
151
+ # prompt = gr.Textbox(label="Prompt")
152
+ # negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
153
+ # num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
154
+ # controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
155
+ # seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
156
+ # run_button = gr.Button(value="Run")
157
+
158
+
159
+ # with gr.Column():
160
+ # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
161
+ # ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
162
+ # run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
163
+
164
+ # block.launch(debug = True)