Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('./')
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import spaces
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import subprocess
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import cv2
|
12 |
+
import torch
|
13 |
+
import random
|
14 |
+
|
15 |
+
os.system("pip install -e ./controlnet_aux")
|
16 |
+
|
17 |
+
from controlnet_aux import OpenposeDetector #, CannyDetector
|
18 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
19 |
+
|
20 |
+
from huggingface_hub import hf_hub_download
|
21 |
+
|
22 |
+
from huggingface_hub import login
|
23 |
+
hf_token = os.environ.get("HF_TOKEN")
|
24 |
+
login(token=hf_token)
|
25 |
+
|
26 |
+
MAX_SEED = np.iinfo(np.int32).max
|
27 |
+
|
28 |
+
try:
|
29 |
+
local_dir = os.path.dirname(__file__)
|
30 |
+
except:
|
31 |
+
local_dir = '.'
|
32 |
+
|
33 |
+
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='pipeline_bria.py', local_dir=local_dir)
|
34 |
+
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='transformer_bria.py', local_dir=local_dir)
|
35 |
+
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='bria_utils.py', local_dir=local_dir)
|
36 |
+
hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir)
|
37 |
+
hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir)
|
38 |
+
|
39 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
40 |
+
if randomize_seed:
|
41 |
+
seed = random.randint(0, MAX_SEED)
|
42 |
+
return seed
|
43 |
+
|
44 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
45 |
+
model_configs = {
|
46 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
47 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
48 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
49 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
50 |
+
}
|
51 |
+
|
52 |
+
RATIO_CONFIGS_1024 = {
|
53 |
+
0.6666666666666666: {"width": 832, "height": 1248},
|
54 |
+
0.7432432432432432: {"width": 880, "height": 1184},
|
55 |
+
0.8028169014084507: {"width": 912, "height": 1136},
|
56 |
+
1.0: {"width": 1024, "height": 1024},
|
57 |
+
1.2456140350877194: {"width": 1136, "height": 912},
|
58 |
+
1.3454545454545455: {"width": 1184, "height": 880},
|
59 |
+
1.4339622641509433: {"width": 1216, "height": 848},
|
60 |
+
1.5: {"width": 1248, "height": 832},
|
61 |
+
1.5490196078431373: {"width": 1264, "height": 816},
|
62 |
+
1.62: {"width": 1296, "height": 800},
|
63 |
+
1.7708333333333333: {"width": 1360, "height": 768},
|
64 |
+
}
|
65 |
+
|
66 |
+
encoder = 'vitl'
|
67 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
68 |
+
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
|
69 |
+
state_dict = torch.load(filepath, map_location="cpu")
|
70 |
+
model.load_state_dict(state_dict)
|
71 |
+
model = model.to(DEVICE).eval()
|
72 |
+
|
73 |
+
import torch
|
74 |
+
from diffusers.utils import load_image
|
75 |
+
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel
|
76 |
+
from pipeline_bria_controlnet import BriaControlNetPipeline
|
77 |
+
import PIL.Image as Image
|
78 |
+
|
79 |
+
base_model = 'briaai/BRIA-3.1'
|
80 |
+
controlnet_model = 'briaai/BRIA-3.1-ControlNet-Union'
|
81 |
+
controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
82 |
+
pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
83 |
+
pipe = pipe.to(device="cuda", dtype=torch.bfloat16)
|
84 |
+
|
85 |
+
mode_mapping = {
|
86 |
+
"depth": 0,
|
87 |
+
"canny": 1,
|
88 |
+
"colorgrid": 2,
|
89 |
+
"recolor": 3,
|
90 |
+
"tile": 4,
|
91 |
+
"pose": 5,
|
92 |
+
}
|
93 |
+
strength_mapping = {
|
94 |
+
"depth": 1.0,
|
95 |
+
"canny": 1.0,
|
96 |
+
"colorgrid": 1.0,
|
97 |
+
"recolor": 1.0,
|
98 |
+
"tile": 1.0,
|
99 |
+
"pose": 1.0,
|
100 |
+
}
|
101 |
+
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
102 |
+
|
103 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
104 |
+
pipe.enable_model_cpu_offload() # for saving memory
|
105 |
+
|
106 |
+
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
107 |
+
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
108 |
+
|
109 |
+
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
110 |
+
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
111 |
+
|
112 |
+
def extract_depth(image):
|
113 |
+
image = np.asarray(image)
|
114 |
+
depth = model.infer_image(image[:, :, ::-1])
|
115 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
116 |
+
depth = depth.astype(np.uint8)
|
117 |
+
gray_depth = Image.fromarray(depth).convert('RGB')
|
118 |
+
return gray_depth
|
119 |
+
|
120 |
+
def extract_openpose(img):
|
121 |
+
processed_image_open_pose = open_pose(img, hand_and_face=True)
|
122 |
+
processed_image_open_pose = processed_image_open_pose.resize(img.size)
|
123 |
+
return processed_image_open_pose
|
124 |
+
|
125 |
+
def extract_canny(input_image):
|
126 |
+
image = np.array(input_image)
|
127 |
+
image = cv2.Canny(image, 100, 200)
|
128 |
+
image = image[:, :, None]
|
129 |
+
image = np.concatenate([image, image, image], axis=2)
|
130 |
+
canny_image = Image.fromarray(image)
|
131 |
+
return canny_image
|
132 |
+
|
133 |
+
|
134 |
+
def convert_to_grayscale(image):
|
135 |
+
gray_image = image.convert('L').convert('RGB')
|
136 |
+
return gray_image
|
137 |
+
|
138 |
+
def tile(downscale_factor, input_image):
|
139 |
+
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST)
|
140 |
+
return control_image
|
141 |
+
|
142 |
+
def resize_img(control_image):
|
143 |
+
image_ratio = control_image.width / control_image.height
|
144 |
+
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
|
145 |
+
to_height = RATIO_CONFIGS_1024[ratio]["height"]
|
146 |
+
to_width = RATIO_CONFIGS_1024[ratio]["width"]
|
147 |
+
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
|
148 |
+
return resized_image
|
149 |
+
|
150 |
+
@spaces.GPU(duration=180)
|
151 |
+
def infer(image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
|
152 |
+
control_mode_num = mode_mapping[control_mode]
|
153 |
+
|
154 |
+
if image_in is not None:
|
155 |
+
image_in = resize_img(load_image(image_in))
|
156 |
+
if control_mode == "canny":
|
157 |
+
control_image = extract_canny(image_in)
|
158 |
+
elif control_mode == "depth":
|
159 |
+
control_image = extract_depth(image_in)
|
160 |
+
elif control_mode == "pose":
|
161 |
+
control_image = extract_openpose(image_in)
|
162 |
+
elif control_mode == "colorgrid":
|
163 |
+
control_image = tile(64, image_in)
|
164 |
+
elif control_mode == "recolor":
|
165 |
+
control_image = convert_to_grayscale(image_in)
|
166 |
+
elif control_mode == "tile":
|
167 |
+
control_image = tile(16, image_in)
|
168 |
+
|
169 |
+
control_image = resize_img(control_image)
|
170 |
+
|
171 |
+
width, height = control_image.size
|
172 |
+
|
173 |
+
image = pipe(
|
174 |
+
prompt,
|
175 |
+
control_image=control_image,
|
176 |
+
control_mode=control_mode_num,
|
177 |
+
width=width,
|
178 |
+
height=height,
|
179 |
+
controlnet_conditioning_scale=control_strength,
|
180 |
+
num_inference_steps=inference_steps,
|
181 |
+
guidance_scale=guidance_scale,
|
182 |
+
generator=torch.manual_seed(seed),
|
183 |
+
max_sequence_length=128,
|
184 |
+
negative_prompt="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate"
|
185 |
+
).images[0]
|
186 |
+
|
187 |
+
torch.cuda.empty_cache()
|
188 |
+
|
189 |
+
return image, control_image, gr.update(visible=True)
|
190 |
+
|
191 |
+
|
192 |
+
css="""
|
193 |
+
#col-container{
|
194 |
+
margin: 0 auto;
|
195 |
+
max-width: 1080px;
|
196 |
+
}
|
197 |
+
"""
|
198 |
+
with gr.Blocks(css=css) as demo:
|
199 |
+
with gr.Column(elem_id="col-container"):
|
200 |
+
gr.Markdown("""
|
201 |
+
# BRIA-3.1-ControlNet-Union
|
202 |
+
A unified ControlNet for BRIA-3.1 model from Bria.ai.<br />
|
203 |
+
""")
|
204 |
+
|
205 |
+
with gr.Column():
|
206 |
+
|
207 |
+
with gr.Row():
|
208 |
+
with gr.Column():
|
209 |
+
|
210 |
+
# with gr.Row(equal_height=True):
|
211 |
+
# cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath")
|
212 |
+
image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath")
|
213 |
+
|
214 |
+
prompt = gr.Textbox(label="Prompt", value="best quality")
|
215 |
+
|
216 |
+
with gr.Accordion("Controlnet"):
|
217 |
+
control_mode = gr.Radio(
|
218 |
+
["depth", "canny", "colorgrid", "recolor", "tile", "pose"], label="Mode", value="canny",
|
219 |
+
info="select the control mode, one for all"
|
220 |
+
)
|
221 |
+
|
222 |
+
control_strength = gr.Slider(
|
223 |
+
label="control strength",
|
224 |
+
minimum=0,
|
225 |
+
maximum=1.0,
|
226 |
+
step=0.05,
|
227 |
+
value=0.9,
|
228 |
+
)
|
229 |
+
|
230 |
+
seed = gr.Slider(
|
231 |
+
label="Seed",
|
232 |
+
minimum=0,
|
233 |
+
maximum=MAX_SEED,
|
234 |
+
step=1,
|
235 |
+
value=555,
|
236 |
+
)
|
237 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
238 |
+
|
239 |
+
with gr.Accordion("Advanced settings", open=False):
|
240 |
+
with gr.Column():
|
241 |
+
with gr.Row():
|
242 |
+
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50)
|
243 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
|
244 |
+
|
245 |
+
submit_btn = gr.Button("Submit")
|
246 |
+
|
247 |
+
with gr.Column():
|
248 |
+
result = gr.Image(label="Result")
|
249 |
+
processed_cond = gr.Image(label="Preprocessed Cond")
|
250 |
+
|
251 |
+
submit_btn.click(
|
252 |
+
fn=randomize_seed_fn,
|
253 |
+
inputs=[seed, randomize_seed],
|
254 |
+
outputs=seed,
|
255 |
+
queue=False,
|
256 |
+
api_name=False
|
257 |
+
).then(
|
258 |
+
fn = infer,
|
259 |
+
inputs = [image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
|
260 |
+
outputs = [result, processed_cond],
|
261 |
+
show_api=False
|
262 |
+
)
|
263 |
+
|
264 |
+
demo.queue(api_open=False)
|
265 |
+
demo.launch()
|