Spaces:
Running
Running
Delete bria_utils.py
Browse files- bria_utils.py +0 -302
bria_utils.py
DELETED
@@ -1,302 +0,0 @@
|
|
1 |
-
from typing import Union, Optional, List
|
2 |
-
import torch
|
3 |
-
from diffusers.utils import logging
|
4 |
-
from transformers import (
|
5 |
-
T5EncoderModel,
|
6 |
-
T5TokenizerFast,
|
7 |
-
)
|
8 |
-
from transformers import (
|
9 |
-
CLIPTextModel,
|
10 |
-
CLIPTextModelWithProjection,
|
11 |
-
CLIPTokenizer
|
12 |
-
)
|
13 |
-
|
14 |
-
import numpy as np
|
15 |
-
import torch.distributed as dist
|
16 |
-
import math
|
17 |
-
import os
|
18 |
-
|
19 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
-
|
21 |
-
def get_t5_prompt_embeds(
|
22 |
-
tokenizer: T5TokenizerFast ,
|
23 |
-
text_encoder: T5EncoderModel,
|
24 |
-
prompt: Union[str, List[str]] = None,
|
25 |
-
num_images_per_prompt: int = 1,
|
26 |
-
max_sequence_length: int = 128,
|
27 |
-
device: Optional[torch.device] = None,
|
28 |
-
):
|
29 |
-
device = device or text_encoder.device
|
30 |
-
|
31 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
32 |
-
batch_size = len(prompt)
|
33 |
-
|
34 |
-
text_inputs = tokenizer(
|
35 |
-
prompt,
|
36 |
-
# padding="max_length",
|
37 |
-
max_length=max_sequence_length,
|
38 |
-
truncation=True,
|
39 |
-
add_special_tokens=True,
|
40 |
-
return_tensors="pt",
|
41 |
-
)
|
42 |
-
text_input_ids = text_inputs.input_ids
|
43 |
-
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
44 |
-
|
45 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
46 |
-
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
47 |
-
logger.warning(
|
48 |
-
"The following part of your input was truncated because `max_sequence_length` is set to "
|
49 |
-
f" {max_sequence_length} tokens: {removed_text}"
|
50 |
-
)
|
51 |
-
|
52 |
-
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
53 |
-
|
54 |
-
# Concat zeros to max_sequence
|
55 |
-
b, seq_len, dim = prompt_embeds.shape
|
56 |
-
if seq_len<max_sequence_length:
|
57 |
-
padding = torch.zeros((b,max_sequence_length-seq_len,dim),dtype=prompt_embeds.dtype,device=prompt_embeds.device)
|
58 |
-
prompt_embeds = torch.concat([prompt_embeds,padding],dim=1)
|
59 |
-
|
60 |
-
prompt_embeds = prompt_embeds.to(device=device)
|
61 |
-
|
62 |
-
_, seq_len, _ = prompt_embeds.shape
|
63 |
-
|
64 |
-
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
65 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
66 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
67 |
-
|
68 |
-
return prompt_embeds
|
69 |
-
|
70 |
-
# in order the get the same sigmas as in training and sample from them
|
71 |
-
def get_original_sigmas(num_train_timesteps=1000,num_inference_steps=1000):
|
72 |
-
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
73 |
-
sigmas = timesteps / num_train_timesteps
|
74 |
-
|
75 |
-
inds = [int(ind) for ind in np.linspace(0, num_train_timesteps-1, num_inference_steps)]
|
76 |
-
new_sigmas = sigmas[inds]
|
77 |
-
return new_sigmas
|
78 |
-
|
79 |
-
def is_ng_none(negative_prompt):
|
80 |
-
return negative_prompt is None or negative_prompt=='' or (isinstance(negative_prompt,list) and negative_prompt[0] is None) or (type(negative_prompt)==list and negative_prompt[0]=='')
|
81 |
-
|
82 |
-
class CudaTimerContext:
|
83 |
-
def __init__(self, times_arr):
|
84 |
-
self.times_arr = times_arr
|
85 |
-
|
86 |
-
def __enter__(self):
|
87 |
-
self.before_event = torch.cuda.Event(enable_timing=True)
|
88 |
-
self.after_event = torch.cuda.Event(enable_timing=True)
|
89 |
-
self.before_event.record()
|
90 |
-
|
91 |
-
def __exit__(self, type, value, traceback):
|
92 |
-
self.after_event.record()
|
93 |
-
torch.cuda.synchronize()
|
94 |
-
elapsed_time = self.before_event.elapsed_time(self.after_event)/1000
|
95 |
-
self.times_arr.append(elapsed_time)
|
96 |
-
|
97 |
-
|
98 |
-
def get_env_prefix():
|
99 |
-
env = os.environ.get("CLOUD_PROVIDER",'AWS').upper()
|
100 |
-
if env=='AWS':
|
101 |
-
return 'SM_CHANNEL'
|
102 |
-
elif env=='AZURE':
|
103 |
-
return 'AZUREML_DATAREFERENCE'
|
104 |
-
|
105 |
-
raise Exception(f'Env {env} not supported')
|
106 |
-
|
107 |
-
|
108 |
-
def compute_density_for_timestep_sampling(
|
109 |
-
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
|
110 |
-
):
|
111 |
-
"""Compute the density for sampling the timesteps when doing SD3 training.
|
112 |
-
|
113 |
-
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
|
114 |
-
|
115 |
-
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
|
116 |
-
"""
|
117 |
-
if weighting_scheme == "logit_normal":
|
118 |
-
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
|
119 |
-
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
|
120 |
-
u = torch.nn.functional.sigmoid(u)
|
121 |
-
elif weighting_scheme == "mode":
|
122 |
-
u = torch.rand(size=(batch_size,), device="cpu")
|
123 |
-
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
|
124 |
-
else:
|
125 |
-
u = torch.rand(size=(batch_size,), device="cpu")
|
126 |
-
return u
|
127 |
-
|
128 |
-
def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
|
129 |
-
"""Computes loss weighting scheme for SD3 training.
|
130 |
-
|
131 |
-
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
|
132 |
-
|
133 |
-
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
|
134 |
-
"""
|
135 |
-
if weighting_scheme == "sigma_sqrt":
|
136 |
-
weighting = (sigmas**-2.0).float()
|
137 |
-
elif weighting_scheme == "cosmap":
|
138 |
-
bot = 1 - 2 * sigmas + 2 * sigmas**2
|
139 |
-
weighting = 2 / (math.pi * bot)
|
140 |
-
else:
|
141 |
-
weighting = torch.ones_like(sigmas)
|
142 |
-
return weighting
|
143 |
-
|
144 |
-
|
145 |
-
def initialize_distributed():
|
146 |
-
# Initialize the process group for distributed training
|
147 |
-
dist.init_process_group('nccl')
|
148 |
-
|
149 |
-
# Get the current process's rank (ID) and the total number of processes (world size)
|
150 |
-
rank = dist.get_rank()
|
151 |
-
world_size = dist.get_world_size()
|
152 |
-
|
153 |
-
print(f"Initialized distributed training: Rank {rank}/{world_size}")
|
154 |
-
|
155 |
-
|
156 |
-
def get_clip_prompt_embeds(
|
157 |
-
text_encoder: CLIPTextModel,
|
158 |
-
text_encoder_2: CLIPTextModelWithProjection,
|
159 |
-
tokenizer: CLIPTokenizer,
|
160 |
-
tokenizer_2: CLIPTokenizer,
|
161 |
-
prompt: Union[str, List[str]] = None,
|
162 |
-
num_images_per_prompt: int = 1,
|
163 |
-
max_sequence_length: int = 77,
|
164 |
-
device: Optional[torch.device] = None,
|
165 |
-
):
|
166 |
-
|
167 |
-
device = device or text_encoder.device
|
168 |
-
assert max_sequence_length == tokenizer.model_max_length
|
169 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
170 |
-
|
171 |
-
# Define tokenizers and text encoders
|
172 |
-
tokenizers = [tokenizer, tokenizer_2]
|
173 |
-
text_encoders = [text_encoder, text_encoder_2]
|
174 |
-
|
175 |
-
# textual inversion: process multi-vector tokens if necessary
|
176 |
-
prompt_embeds_list = []
|
177 |
-
prompts = [prompt, prompt]
|
178 |
-
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
179 |
-
text_inputs = tokenizer(
|
180 |
-
prompt,
|
181 |
-
padding="max_length",
|
182 |
-
max_length=tokenizer.model_max_length,
|
183 |
-
truncation=True,
|
184 |
-
return_tensors="pt",
|
185 |
-
)
|
186 |
-
|
187 |
-
text_input_ids = text_inputs.input_ids
|
188 |
-
prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device), output_hidden_states=True)
|
189 |
-
|
190 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
191 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
192 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
193 |
-
|
194 |
-
prompt_embeds_list.append(prompt_embeds)
|
195 |
-
|
196 |
-
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
197 |
-
|
198 |
-
|
199 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
200 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
201 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
202 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
203 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
204 |
-
bs_embed * num_images_per_prompt, -1
|
205 |
-
)
|
206 |
-
|
207 |
-
return prompt_embeds, pooled_prompt_embeds
|
208 |
-
|
209 |
-
def get_1d_rotary_pos_embed(
|
210 |
-
dim: int,
|
211 |
-
pos: Union[np.ndarray, int],
|
212 |
-
theta: float = 10000.0,
|
213 |
-
use_real=False,
|
214 |
-
linear_factor=1.0,
|
215 |
-
ntk_factor=1.0,
|
216 |
-
repeat_interleave_real=True,
|
217 |
-
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
|
218 |
-
):
|
219 |
-
"""
|
220 |
-
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
221 |
-
|
222 |
-
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
|
223 |
-
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
|
224 |
-
data type.
|
225 |
-
|
226 |
-
Args:
|
227 |
-
dim (`int`): Dimension of the frequency tensor.
|
228 |
-
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
|
229 |
-
theta (`float`, *optional*, defaults to 10000.0):
|
230 |
-
Scaling factor for frequency computation. Defaults to 10000.0.
|
231 |
-
use_real (`bool`, *optional*):
|
232 |
-
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
233 |
-
linear_factor (`float`, *optional*, defaults to 1.0):
|
234 |
-
Scaling factor for the context extrapolation. Defaults to 1.0.
|
235 |
-
ntk_factor (`float`, *optional*, defaults to 1.0):
|
236 |
-
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
|
237 |
-
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
|
238 |
-
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
|
239 |
-
Otherwise, they are concateanted with themselves.
|
240 |
-
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
|
241 |
-
the dtype of the frequency tensor.
|
242 |
-
Returns:
|
243 |
-
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
244 |
-
"""
|
245 |
-
assert dim % 2 == 0
|
246 |
-
|
247 |
-
if isinstance(pos, int):
|
248 |
-
pos = torch.arange(pos)
|
249 |
-
if isinstance(pos, np.ndarray):
|
250 |
-
pos = torch.from_numpy(pos) # type: ignore # [S]
|
251 |
-
|
252 |
-
theta = theta * ntk_factor
|
253 |
-
freqs = (
|
254 |
-
1.0
|
255 |
-
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
|
256 |
-
/ linear_factor
|
257 |
-
) # [D/2]
|
258 |
-
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
|
259 |
-
if use_real and repeat_interleave_real:
|
260 |
-
# flux, hunyuan-dit, cogvideox
|
261 |
-
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
262 |
-
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
263 |
-
return freqs_cos, freqs_sin
|
264 |
-
elif use_real:
|
265 |
-
# stable audio, allegro
|
266 |
-
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
|
267 |
-
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
|
268 |
-
return freqs_cos, freqs_sin
|
269 |
-
else:
|
270 |
-
# lumina
|
271 |
-
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
272 |
-
return freqs_cis
|
273 |
-
|
274 |
-
|
275 |
-
class FluxPosEmbed(torch.nn.Module):
|
276 |
-
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
277 |
-
def __init__(self, theta: int, axes_dim: List[int]):
|
278 |
-
super().__init__()
|
279 |
-
self.theta = theta
|
280 |
-
self.axes_dim = axes_dim
|
281 |
-
|
282 |
-
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
283 |
-
n_axes = ids.shape[-1]
|
284 |
-
cos_out = []
|
285 |
-
sin_out = []
|
286 |
-
pos = ids.float()
|
287 |
-
is_mps = ids.device.type == "mps"
|
288 |
-
freqs_dtype = torch.float32 if is_mps else torch.float64
|
289 |
-
for i in range(n_axes):
|
290 |
-
cos, sin = get_1d_rotary_pos_embed(
|
291 |
-
self.axes_dim[i],
|
292 |
-
pos[:, i],
|
293 |
-
theta=self.theta,
|
294 |
-
repeat_interleave_real=True,
|
295 |
-
use_real=True,
|
296 |
-
freqs_dtype=freqs_dtype,
|
297 |
-
)
|
298 |
-
cos_out.append(cos)
|
299 |
-
sin_out.append(sin)
|
300 |
-
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
301 |
-
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
302 |
-
return freqs_cos, freqs_sin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|