File size: 8,292 Bytes
884e760
6c74fa1
2d8c11a
6c74fa1
6a1229b
 
 
2d8c11a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1229b
2d8c11a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1229b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8c11a
6c74fa1
18fa5fa
 
6c74fa1
2d8c11a
 
6a1229b
2d8c11a
 
 
6a1229b
2d8c11a
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcbf369
6c74fa1
 
dcbf369
 
6c74fa1
 
 
 
 
 
293de8d
6c74fa1
 
 
0d20806
293de8d
6c74fa1
 
 
2d8c11a
 
 
 
6c74fa1
2d8c11a
 
 
 
 
 
 
 
 
 
 
6c74fa1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import numpy as np

import os
from PIL import Image
import requests
from io import BytesIO
import io
import base64

hf_token = os.environ.get("HF_TOKEN")
auth_headers = {"api_token": hf_token}

def convert_mask_image_to_base64_string(mask_image):
    buffer = io.BytesIO()
    mask_image.save(buffer, format="PNG")  # You can choose the format (e.g., "JPEG", "PNG")
    # Encode the buffer in base64
    image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
    return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url

def download_image(url):
    response = requests.get(url)
    return Image.open(BytesIO(response.content)).convert("RGB")

def eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale):

    # url = "http://engine.prod.bria-api.com/v1/eraser" # TODO: use this link!
    url = "http://engine.int.bria-api.com/v1/eraser" # TODO: use this link!
    
    payload = {
    "file": image_base64_file,
    "mask_file": mask_base64_file,
    "seed": seed,
    "mask_type": mask_type,
    "original_quality": original_quality,
    "text_guidance_scale": guidance_scale
    }
    response = requests.post(url, json=payload, headers=auth_headers)
    response = response.json()
    res_image = download_image(response["result_url"])
    
    return res_image

ratios_map =  {
    0.5:{"width":704,"height":1408},
    0.57:{"width":768,"height":1344},
    0.68:{"width":832,"height":1216},
    0.72:{"width":832,"height":1152},
    0.78:{"width":896,"height":1152},
    0.82:{"width":896,"height":1088},
    0.88:{"width":960,"height":1088},
    0.94:{"width":960,"height":1024},
    1.00:{"width":1024,"height":1024},
    1.13:{"width":1088,"height":960},
    1.21:{"width":1088,"height":896},
    1.29:{"width":1152,"height":896},
    1.38:{"width":1152,"height":832},
    1.46:{"width":1216,"height":832},
    1.67:{"width":1280,"height":768},
    1.75:{"width":1344,"height":768},
    2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))



def get_masked_image(image, image_mask, width, height):
    image_mask = image_mask # inpaint area is white
    image_mask = image_mask.resize((width, height)) # object to remove is white (1)
    image_mask_pil = image_mask
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    masked_image_to_present = image.copy()
    masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5)  # set as masked pixel
    image[image_mask > 0.5] = 0.5  # set as masked pixel - s.t. will be grey 
    image = Image.fromarray((image * 255.0).astype(np.uint8))
    masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
    return image, image_mask_pil, masked_image_to_present

    
def get_size(init_image):
    w,h=init_image.size
    curr_ratio = w/h
    ind = np.argmin(np.abs(curr_ratio-ratios))
    ratio = ratios[ind]
    chosen_ratio  = ratios_map[ratio]
    w,h = chosen_ratio['width'], chosen_ratio['height']

    return w,h


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, guidance_scale=1.2, seed=123456):

    init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
    mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
    
    image_base64_file = convert_mask_image_to_base64_string(init_image)
    mask_base64_file = convert_mask_image_to_base64_string(mask)
    
    mask_type = "brush"
    original_quality = True
    gen_img = eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale)
    
    return gen_img


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA Eraser")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for 
            <a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting" target="_blank">BRIA 2.3 ControlNet Inpainting</a>. 
            BRIA Eraser enables the ability to clear out and clean areas in an image or remove specific elements, while trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
          </p>
        ''')
    with gr.Row():
        with gr.Column():
            image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed"))
            with gr.Row(elem_id="prompt-container", equal_height=True):
                btn = gr.Button("Inpaint!", elem_id="run_button")
            
            with gr.Accordion(label="Advanced Settings", open=False):
                with gr.Row(equal_height=True):
                    guidance_scale = gr.Number(value=1.2, minimum=0.0, maximum=2.5, step=0.1, label="guidance_scale")
                    seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed")
        
        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img", height=400)

    # Button click will trigger the inpainting function (no prompt required)
    btn.click(fn=predict, inputs=[image, guidance_scale, seed], outputs=[image_out], api_name='run')
    

    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)