Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ def read_content(file_path: str) -> str:
|
|
23 |
|
24 |
return content
|
25 |
|
26 |
-
def predict(image, prompt="high quality, best quality", negative_prompt="", guidance_scale=5, steps=30, ip_adapter_scale = 1.0, width=1024, height=1024, seed=0):
|
27 |
|
28 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
29 |
|
@@ -31,7 +31,8 @@ def predict(image, prompt="high quality, best quality", negative_prompt="", guid
|
|
31 |
negative_prompt = None
|
32 |
|
33 |
init_image = image.convert("RGB")
|
34 |
-
|
|
|
35 |
|
36 |
generator = torch.Generator(device="cpu").manual_seed(int(seed))
|
37 |
|
@@ -120,6 +121,7 @@ with image_blocks as demo:
|
|
120 |
steps = gr.Number(value=30, minimum=10, maximum=100, step=1, label="steps")
|
121 |
seed = gr.Number(value=0, minimum=0, maximum=100000, step=1, label="seed")
|
122 |
negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
|
|
|
123 |
|
124 |
|
125 |
with gr.Column():
|
@@ -127,8 +129,8 @@ with image_blocks as demo:
|
|
127 |
|
128 |
|
129 |
|
130 |
-
btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, ip_adapter_scale, width, height, seed], outputs=[image_out], api_name='run')
|
131 |
-
prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, ip_adapter_scale, width, height, seed], outputs=[image_out])
|
132 |
|
133 |
# gr.Examples(
|
134 |
# examples=[
|
|
|
23 |
|
24 |
return content
|
25 |
|
26 |
+
def predict(image, prompt="high quality, best quality", negative_prompt="", guidance_scale=5, steps=30, ip_adapter_scale = 1.0, width=1024, height=1024, seed=0, center_crop=False):
|
27 |
|
28 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
29 |
|
|
|
31 |
negative_prompt = None
|
32 |
|
33 |
init_image = image.convert("RGB")
|
34 |
+
if center_crop is False:
|
35 |
+
init_image = init_image.resize((224, 224))
|
36 |
|
37 |
generator = torch.Generator(device="cpu").manual_seed(int(seed))
|
38 |
|
|
|
121 |
steps = gr.Number(value=30, minimum=10, maximum=100, step=1, label="steps")
|
122 |
seed = gr.Number(value=0, minimum=0, maximum=100000, step=1, label="seed")
|
123 |
negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
|
124 |
+
center_crop = gr.Checkbox(label="Center Crop", info="If not checked, the image would be resized to square before it's fed to the model."),
|
125 |
|
126 |
|
127 |
with gr.Column():
|
|
|
129 |
|
130 |
|
131 |
|
132 |
+
btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, ip_adapter_scale, width, height, seed], center_crop, outputs=[image_out], api_name='run')
|
133 |
+
prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, ip_adapter_scale, width, height, seed, center_crop], outputs=[image_out])
|
134 |
|
135 |
# gr.Examples(
|
136 |
# examples=[
|