AFCCL / app.py
brian25's picture
Create app.py
7641329 verified
raw
history blame contribute delete
796 Bytes
import numpy as np
import gradio as gr
import tensorflow as tf
from tensorflow import keras
import pandas as pd
model = tf.keras.models.load_model("Oxygen Content.keras")
def predict(Fuel,Air):
Fuel = (Fuel*1700)/17000
Air = (Air*13000)/130000
xn = np.array([[Fuel,Air]])
yn = abs(model.predict(xn))
Percantage = np.round(yn[0,0]*100, 2)
return Percantage
demo = gr.Interface(fn=predict,inputs=["number", "number"],outputs=["number"],
title="Oxygen Content(%) Analyzer in Flue Gas",
description="Input Fuel Flowrate and Air Flowrate as per controller recorder value for example: 2.2 or 5.5 etc. This model will predict the Oxygen Content(%) in Flue Gas just like real life analyzer.",
)
demo.launch(share=True)