|
import numpy as np |
|
import gradio as gr |
|
import tensorflow as tf |
|
from tensorflow import keras |
|
import pandas as pd |
|
|
|
model = tf.keras.models.load_model("Oxygen Content.keras") |
|
|
|
def predict(Fuel,Air): |
|
Fuel = (Fuel*1700)/17000 |
|
Air = (Air*13000)/130000 |
|
xn = np.array([[Fuel,Air]]) |
|
yn = abs(model.predict(xn)) |
|
Percantage = np.round(yn[0,0]*100, 2) |
|
return Percantage |
|
|
|
demo = gr.Interface(fn=predict,inputs=["number", "number"],outputs=["number"], |
|
title="Oxygen Content(%) Analyzer in Flue Gas", |
|
description="Input Fuel Flowrate and Air Flowrate as per controller recorder value for example: 2.2 or 5.5 etc. This model will predict the Oxygen Content(%) in Flue Gas just like real life analyzer.", |
|
) |
|
|
|
demo.launch(share=True) |